J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke
{"title":"使用面向方面编程推断基于代理的模型的依赖关系图","authors":"J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke","doi":"10.1109/WSC52266.2021.9715293","DOIUrl":null,"url":null,"abstract":"Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inferring Dependency Graphs for Agent-Based Models Using Aspect-Oriented Programming\",\"authors\":\"J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke\",\"doi\":\"10.1109/WSC52266.2021.9715293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferring Dependency Graphs for Agent-Based Models Using Aspect-Oriented Programming
Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.