使用面向方面编程推断基于代理的模型的依赖关系图

J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke
{"title":"使用面向方面编程推断基于代理的模型的依赖关系图","authors":"J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke","doi":"10.1109/WSC52266.2021.9715293","DOIUrl":null,"url":null,"abstract":"Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inferring Dependency Graphs for Agent-Based Models Using Aspect-Oriented Programming\",\"authors\":\"J. N. Kreikemeyer, Till Köster, A. Uhrmacher, Tom Warnke\",\"doi\":\"10.1109/WSC52266.2021.9715293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于种群的CTMC模型通常可以通过随机模拟算法(SSAs)有效地执行。然而,基于智能体的模型的异构性对ssa提出了挑战。为了进行有效的模拟,我们采用ssa,利用基于种群的模型的依赖关系图,并将其适应于基于代理的模型。我们通过面向方面编程(AOP)检测依赖关系,将我们的方法与基于代理的模拟的面向对象框架集成在一起。通过这种方式,建模者可以在不手动记录依赖信息的情况下实现模型,同时仍然使用有效的、依赖感知的ssa执行模型。我们为MASON框架提供了我们的方法的开源实现,显示了模型执行的显著加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring Dependency Graphs for Agent-Based Models Using Aspect-Oriented Programming
Population-based CTMC models can generally be executed efficiently with stochastic simulation algorithms (SSAs). However, the heterogeneity in agent-based models poses a challenge for SSAs. To allow for an efficient simulation, we take SSAs that exploit dependency graphs for population-based models and adapt them to agent-based models. We integrate our approach with object-oriented frameworks for agent-based simulation by detecting dependencies via aspect-oriented programming (AOP). This way, modelers can implement models without manually recording dependency information, while still executing the models with efficient, dependency-aware SSAs. We provide an open-source implementation of our approach for the framework MASON, showing significant speedups in model execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信