Pruned-F1DCN:一种轻量级的流量分类网络模型

Ruo nan Wang, Jin long Fei, Rong kai Zhang
{"title":"Pruned-F1DCN:一种轻量级的流量分类网络模型","authors":"Ruo nan Wang, Jin long Fei, Rong kai Zhang","doi":"10.1145/3584714.3584719","DOIUrl":null,"url":null,"abstract":"With the continuous development of deep learning, deep neural networks are gradually applied to traffic classification problems. However, the large network structure and parameter number of deep neural networks hinder the application on edge computing devices. Reducing network scale helps relieve computational pressure, this paper proposes a lightweight traffic classification model to provide reliable accuracy and reduce the consumption of computing resources. In this work, we design an F1DCN network, which takes full advantage of the convolution layer parameters and the convolution kernel field of view. The lightweight approach effectively improves the classification performance and saves massive parameters. The model pruning method is applied to find the optimal structure of the network. Experiments on two public datasets show that the proposed model reduce more than 80 % parameters and 45 % FLOPS compared with traditional traffic classification methods, and maintaining more than 95 % classification accuracy.","PeriodicalId":112952,"journal":{"name":"Proceedings of the 2022 International Conference on Cyber Security","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pruned-F1DCN: A lightweight network model for traffic classification\",\"authors\":\"Ruo nan Wang, Jin long Fei, Rong kai Zhang\",\"doi\":\"10.1145/3584714.3584719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of deep learning, deep neural networks are gradually applied to traffic classification problems. However, the large network structure and parameter number of deep neural networks hinder the application on edge computing devices. Reducing network scale helps relieve computational pressure, this paper proposes a lightweight traffic classification model to provide reliable accuracy and reduce the consumption of computing resources. In this work, we design an F1DCN network, which takes full advantage of the convolution layer parameters and the convolution kernel field of view. The lightweight approach effectively improves the classification performance and saves massive parameters. The model pruning method is applied to find the optimal structure of the network. Experiments on two public datasets show that the proposed model reduce more than 80 % parameters and 45 % FLOPS compared with traditional traffic classification methods, and maintaining more than 95 % classification accuracy.\",\"PeriodicalId\":112952,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Cyber Security\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Cyber Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584714.3584719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584714.3584719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习的不断发展,深度神经网络逐渐被应用到流量分类问题中。然而,深度神经网络庞大的网络结构和参数数量阻碍了其在边缘计算设备上的应用。减小网络规模有助于减轻计算压力,本文提出了一种轻量级的流量分类模型,以提供可靠的准确率并减少计算资源的消耗。在这项工作中,我们设计了一个充分利用卷积层参数和卷积核视场的F1DCN网络。轻量级方法有效地提高了分类性能,节省了大量参数。采用模型剪枝法寻找网络的最优结构。在两个公开数据集上的实验表明,与传统的流量分类方法相比,该模型减少了80%以上的参数,减少了45%的FLOPS,保持了95%以上的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pruned-F1DCN: A lightweight network model for traffic classification
With the continuous development of deep learning, deep neural networks are gradually applied to traffic classification problems. However, the large network structure and parameter number of deep neural networks hinder the application on edge computing devices. Reducing network scale helps relieve computational pressure, this paper proposes a lightweight traffic classification model to provide reliable accuracy and reduce the consumption of computing resources. In this work, we design an F1DCN network, which takes full advantage of the convolution layer parameters and the convolution kernel field of view. The lightweight approach effectively improves the classification performance and saves massive parameters. The model pruning method is applied to find the optimal structure of the network. Experiments on two public datasets show that the proposed model reduce more than 80 % parameters and 45 % FLOPS compared with traditional traffic classification methods, and maintaining more than 95 % classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信