使用深度学习的图像伪造检测:综述

Zankhana Barad, Mukesh M Goswami
{"title":"使用深度学习的图像伪造检测:综述","authors":"Zankhana Barad, Mukesh M Goswami","doi":"10.1109/ICACCS48705.2020.9074408","DOIUrl":null,"url":null,"abstract":"The information is shared in form of images through newspapers, magazines, internet, or scientific journals. Due to software like Photoshop, GIMP, and Coral Draw, it becomes very hard to differentiate between original image and tampered image. Traditional methods for image forgery detection mostly use handcrafted features. The problem with the traditional approaches of detection of image tampering is that most of the methods can identify a specific type of tampering by identifying a certain features in image. Nowadays, deep learning methods are used for image tampering detection. These methods reported better accuracy than traditional methods because of their capability of extracting complex features from image. In this paper, we present a detailed survey of deep learning based techniques for image forgery detection, outcomes of survey in form of analysis and findings, and details of publically available image forgery datasets.","PeriodicalId":439003,"journal":{"name":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Image Forgery Detection using Deep Learning: A Survey\",\"authors\":\"Zankhana Barad, Mukesh M Goswami\",\"doi\":\"10.1109/ICACCS48705.2020.9074408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information is shared in form of images through newspapers, magazines, internet, or scientific journals. Due to software like Photoshop, GIMP, and Coral Draw, it becomes very hard to differentiate between original image and tampered image. Traditional methods for image forgery detection mostly use handcrafted features. The problem with the traditional approaches of detection of image tampering is that most of the methods can identify a specific type of tampering by identifying a certain features in image. Nowadays, deep learning methods are used for image tampering detection. These methods reported better accuracy than traditional methods because of their capability of extracting complex features from image. In this paper, we present a detailed survey of deep learning based techniques for image forgery detection, outcomes of survey in form of analysis and findings, and details of publically available image forgery datasets.\",\"PeriodicalId\":439003,\"journal\":{\"name\":\"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS48705.2020.9074408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS48705.2020.9074408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

这些信息以图像的形式通过报纸、杂志、互联网或科学期刊进行共享。由于像Photoshop、GIMP和Coral Draw这样的软件,很难区分原始图像和篡改图像。传统的图像伪造检测方法大多采用手工特征。传统的图像篡改检测方法存在的问题是,大多数方法只能通过识别图像中的特定特征来识别特定类型的篡改。目前,深度学习方法被用于图像篡改检测。由于这些方法能够从图像中提取复杂特征,因此比传统方法具有更高的准确性。在本文中,我们详细介绍了基于深度学习的图像伪造检测技术,以分析和发现形式的调查结果,以及公开可用的图像伪造数据集的详细信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Forgery Detection using Deep Learning: A Survey
The information is shared in form of images through newspapers, magazines, internet, or scientific journals. Due to software like Photoshop, GIMP, and Coral Draw, it becomes very hard to differentiate between original image and tampered image. Traditional methods for image forgery detection mostly use handcrafted features. The problem with the traditional approaches of detection of image tampering is that most of the methods can identify a specific type of tampering by identifying a certain features in image. Nowadays, deep learning methods are used for image tampering detection. These methods reported better accuracy than traditional methods because of their capability of extracting complex features from image. In this paper, we present a detailed survey of deep learning based techniques for image forgery detection, outcomes of survey in form of analysis and findings, and details of publically available image forgery datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信