基于单目视觉的移动机器人SLAM

E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd
{"title":"基于单目视觉的移动机器人SLAM","authors":"E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd","doi":"10.1109/ICPR.2006.810","DOIUrl":null,"url":null,"abstract":"This paper describes a new vision based method for the simultaneous localization and mapping of mobile robots. The only data used is a video input from a moving calibrated monocular camera. From the detection and matching of interest points in images at video rate, robust estimates of the camera poses are computed in real-time and a 3D map of the environment is reconstructed. The computed 3D structure is constantly refined thanks to the introduction of a fast and local bundle adjustment method that makes this approach particularly accurate and reliable. Actually, this method can be seen as a new visual tool that may be used in conjunction with usual systems (GPS, inertia sensors, etc) in SLAM applications","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Monocular Vision Based SLAM for Mobile Robots\",\"authors\":\"E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd\",\"doi\":\"10.1109/ICPR.2006.810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new vision based method for the simultaneous localization and mapping of mobile robots. The only data used is a video input from a moving calibrated monocular camera. From the detection and matching of interest points in images at video rate, robust estimates of the camera poses are computed in real-time and a 3D map of the environment is reconstructed. The computed 3D structure is constantly refined thanks to the introduction of a fast and local bundle adjustment method that makes this approach particularly accurate and reliable. Actually, this method can be seen as a new visual tool that may be used in conjunction with usual systems (GPS, inertia sensors, etc) in SLAM applications\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

提出了一种基于视觉的移动机器人同步定位与映射的新方法。唯一使用的数据是从移动校准的单目摄像机输入的视频。通过视频速率下图像中兴趣点的检测和匹配,实时计算摄像机姿态的鲁棒估计,并重建环境的3D地图。由于引入了快速和局部束调整方法,使得该方法特别准确和可靠,因此计算出的3D结构不断得到完善。实际上,这种方法可以被视为一种新的可视化工具,可以与SLAM应用中的常规系统(GPS,惯性传感器等)结合使用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular Vision Based SLAM for Mobile Robots
This paper describes a new vision based method for the simultaneous localization and mapping of mobile robots. The only data used is a video input from a moving calibrated monocular camera. From the detection and matching of interest points in images at video rate, robust estimates of the camera poses are computed in real-time and a 3D map of the environment is reconstructed. The computed 3D structure is constantly refined thanks to the introduction of a fast and local bundle adjustment method that makes this approach particularly accurate and reliable. Actually, this method can be seen as a new visual tool that may be used in conjunction with usual systems (GPS, inertia sensors, etc) in SLAM applications
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信