COSMIC:概念上指定的多实例集群

H. Kriegel, A. Pryakhin, Matthias Schubert, A. Zimek
{"title":"COSMIC:概念上指定的多实例集群","authors":"H. Kriegel, A. Pryakhin, Matthias Schubert, A. Zimek","doi":"10.1109/ICDM.2006.46","DOIUrl":null,"url":null,"abstract":"Recently, more and more applications represent data objects as sets of feature vectors or multi-instance objects. In this paper, we propose COSMIC, a method for deriving concept lattices from multi-instance data based on hierarchical density-based clustering. The found concepts correspond to groups or clusters of multi-instance objects having similar instances in common. We demonstrate that COSMIC outperforms compared methods with respect to efficiency and cluster quality and is capable to extract interesting patterns in multi-instance data sets.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"COSMIC: Conceptually Specified Multi-Instance Clusters\",\"authors\":\"H. Kriegel, A. Pryakhin, Matthias Schubert, A. Zimek\",\"doi\":\"10.1109/ICDM.2006.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, more and more applications represent data objects as sets of feature vectors or multi-instance objects. In this paper, we propose COSMIC, a method for deriving concept lattices from multi-instance data based on hierarchical density-based clustering. The found concepts correspond to groups or clusters of multi-instance objects having similar instances in common. We demonstrate that COSMIC outperforms compared methods with respect to efficiency and cluster quality and is capable to extract interesting patterns in multi-instance data sets.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,越来越多的应用将数据对象表示为特征向量集或多实例对象。本文提出了一种基于层次密度聚类的多实例数据概念格提取方法COSMIC。找到的概念对应于具有相似公共实例的多实例对象组或集群。我们证明了COSMIC在效率和聚类质量方面优于比较方法,并且能够从多实例数据集中提取有趣的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COSMIC: Conceptually Specified Multi-Instance Clusters
Recently, more and more applications represent data objects as sets of feature vectors or multi-instance objects. In this paper, we propose COSMIC, a method for deriving concept lattices from multi-instance data based on hierarchical density-based clustering. The found concepts correspond to groups or clusters of multi-instance objects having similar instances in common. We demonstrate that COSMIC outperforms compared methods with respect to efficiency and cluster quality and is capable to extract interesting patterns in multi-instance data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信