基于改进遗传算法的机器人路径规划研究

Yimei Zhang
{"title":"基于改进遗传算法的机器人路径规划研究","authors":"Yimei Zhang","doi":"10.1109/icaci55529.2022.9837682","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of slow convergence speed and easy to fall into local optimum in solving the robot path planning problem, this paper improves the basic genetic algorithm. This paper introduces the artificial potential field method to initialize the population, and proposes an adaptive selection method based on the evaluation of the degree of population diversity. The adaptive crossover probability and mutation probability are designed to improve the algorithm solution quality, and multiple simulations are carried out in the grid environment to further prove the feasibility and effectiveness of the algorithm.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Robot Path Planning Based on Improved Genetic Algorithm\",\"authors\":\"Yimei Zhang\",\"doi\":\"10.1109/icaci55529.2022.9837682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problems of slow convergence speed and easy to fall into local optimum in solving the robot path planning problem, this paper improves the basic genetic algorithm. This paper introduces the artificial potential field method to initialize the population, and proposes an adaptive selection method based on the evaluation of the degree of population diversity. The adaptive crossover probability and mutation probability are designed to improve the algorithm solution quality, and multiple simulations are carried out in the grid environment to further prove the feasibility and effectiveness of the algorithm.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决机器人路径规划问题中收敛速度慢、容易陷入局部最优的问题,本文对基本遗传算法进行了改进。引入人工势场法对种群进行初始化,提出了一种基于种群多样性程度评价的自适应选择方法。设计了自适应交叉概率和突变概率,提高了算法的求解质量,并在网格环境下进行了多次仿真,进一步证明了算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Robot Path Planning Based on Improved Genetic Algorithm
In order to solve the problems of slow convergence speed and easy to fall into local optimum in solving the robot path planning problem, this paper improves the basic genetic algorithm. This paper introduces the artificial potential field method to initialize the population, and proposes an adaptive selection method based on the evaluation of the degree of population diversity. The adaptive crossover probability and mutation probability are designed to improve the algorithm solution quality, and multiple simulations are carried out in the grid environment to further prove the feasibility and effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信