模式识别系统的多层次反向传播网络

C.Y. Chen, C. Hwang
{"title":"模式识别系统的多层次反向传播网络","authors":"C.Y. Chen, C. Hwang","doi":"10.1109/ICNN.1994.374724","DOIUrl":null,"url":null,"abstract":"The backpropagation network (BPN) is now widely used in the field of pattern recognition because this artificial neural network can classify complex patterns and perform nontrivial mapping functions. In this paper, we propose a multi-level backpropagation network (MLBPN) model as a classifier for practical pattern recognition systems. The described model reserves the benefits of the BPN and derives the extra benefits of this MLBPN with two fold: (1) the MLBPN can reduce the complexity of BPN, and (2) a speed-up of the recognition process is attained. The experimental results verify these characteristics and show that the MLBPN model is a practical classifier for pattern recognition systems.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A multi-level backpropagation network for pattern recognition systems\",\"authors\":\"C.Y. Chen, C. Hwang\",\"doi\":\"10.1109/ICNN.1994.374724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The backpropagation network (BPN) is now widely used in the field of pattern recognition because this artificial neural network can classify complex patterns and perform nontrivial mapping functions. In this paper, we propose a multi-level backpropagation network (MLBPN) model as a classifier for practical pattern recognition systems. The described model reserves the benefits of the BPN and derives the extra benefits of this MLBPN with two fold: (1) the MLBPN can reduce the complexity of BPN, and (2) a speed-up of the recognition process is attained. The experimental results verify these characteristics and show that the MLBPN model is a practical classifier for pattern recognition systems.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反向传播网络(BPN)由于能够对复杂的模式进行分类和执行非平凡的映射函数,在模式识别领域得到了广泛的应用。在本文中,我们提出了一个多层次反向传播网络(MLBPN)模型作为实际模式识别系统的分类器。所描述的模型保留了BPN的优点,并从两个方面获得了该MLBPN的额外优点:(1)MLBPN可以降低BPN的复杂性;(2)实现了识别过程的加速。实验结果验证了这些特征,表明MLBPN模型是一种实用的模式识别分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-level backpropagation network for pattern recognition systems
The backpropagation network (BPN) is now widely used in the field of pattern recognition because this artificial neural network can classify complex patterns and perform nontrivial mapping functions. In this paper, we propose a multi-level backpropagation network (MLBPN) model as a classifier for practical pattern recognition systems. The described model reserves the benefits of the BPN and derives the extra benefits of this MLBPN with two fold: (1) the MLBPN can reduce the complexity of BPN, and (2) a speed-up of the recognition process is attained. The experimental results verify these characteristics and show that the MLBPN model is a practical classifier for pattern recognition systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信