基于嵌入式学习算法的道路光伏最大功率点快速跟踪方法

K. Yamauchi
{"title":"基于嵌入式学习算法的道路光伏最大功率点快速跟踪方法","authors":"K. Yamauchi","doi":"10.5772/INTECHOPEN.79711","DOIUrl":null,"url":null,"abstract":"This chapter presents a new approach to realize quick maximum power point tracking (MPPT)forphotovoltaics(PVs)beddedonroads.TheMPPTdevicefortheroadphotovoltaics needs to support quick response to the shadow flickers caused by moving objects. Our proposed MPPT device is a microconverter connected to a short PV string. For real-world usage,severalsetsofPVstringconnectedtotheproposedmicroconverterwillbeconnectedin parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to learntheMPPsofasinglePVstring.Therefore,theMPPTdevicetracksMPPviatheperturba-tionandobservationmethodinnormalcircumstancesandthelearningmachinelearnsthe relationships between the acquired MPP and the temperature and magnitude of the Sun irradiation.Consequently,ifthemagnitudeoftheSunbeamincidentonthePVpanelchanges quickly, the learning machine yields the predicted MPP to control a chopper circuit. The simulationresults suggestedthat theproposed MPPTmethod canrealizequickMPPT.","PeriodicalId":106663,"journal":{"name":"Recent Developments in Photovoltaic Materials and Devices","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Quick Maximum Power Point Tracking Method Using an Embedded Learning Algorithm for Photovoltaics on Roads\",\"authors\":\"K. Yamauchi\",\"doi\":\"10.5772/INTECHOPEN.79711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter presents a new approach to realize quick maximum power point tracking (MPPT)forphotovoltaics(PVs)beddedonroads.TheMPPTdevicefortheroadphotovoltaics needs to support quick response to the shadow flickers caused by moving objects. Our proposed MPPT device is a microconverter connected to a short PV string. For real-world usage,severalsetsofPVstringconnectedtotheproposedmicroconverterwillbeconnectedin parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to learntheMPPsofasinglePVstring.Therefore,theMPPTdevicetracksMPPviatheperturba-tionandobservationmethodinnormalcircumstancesandthelearningmachinelearnsthe relationships between the acquired MPP and the temperature and magnitude of the Sun irradiation.Consequently,ifthemagnitudeoftheSunbeamincidentonthePVpanelchanges quickly, the learning machine yields the predicted MPP to control a chopper circuit. The simulationresults suggestedthat theproposed MPPTmethod canrealizequickMPPT.\",\"PeriodicalId\":106663,\"journal\":{\"name\":\"Recent Developments in Photovoltaic Materials and Devices\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Developments in Photovoltaic Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Developments in Photovoltaic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章提出了一种实现光伏路基最大功率点快速跟踪的新方法。用于道路光伏的pptdevice需要支持对移动物体引起的阴影闪烁的快速响应。我们提出的MPPT装置是一个连接到短PV串的微转换器。对于实际使用,连接到所提出的微转换器的几个pvstringset将并行连接。每个转换器都使用受昆虫大脑启发的嵌入式学习算法来学习ppsofasinglepvstring。因此,ppp设备通过摄动和观测方法在正常情况下跟踪smppp,学习机器学习获得的MPP与太阳辐照温度和强度之间的关系。因此,如果入射到pvpanel上的太阳光强度变化很快,学习机器就会产生预测的MPP来控制斩波电路。仿真结果表明,该方法可以实现快速的mppt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quick Maximum Power Point Tracking Method Using an Embedded Learning Algorithm for Photovoltaics on Roads
This chapter presents a new approach to realize quick maximum power point tracking (MPPT)forphotovoltaics(PVs)beddedonroads.TheMPPTdevicefortheroadphotovoltaics needs to support quick response to the shadow flickers caused by moving objects. Our proposed MPPT device is a microconverter connected to a short PV string. For real-world usage,severalsetsofPVstringconnectedtotheproposedmicroconverterwillbeconnectedin parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to learntheMPPsofasinglePVstring.Therefore,theMPPTdevicetracksMPPviatheperturba-tionandobservationmethodinnormalcircumstancesandthelearningmachinelearnsthe relationships between the acquired MPP and the temperature and magnitude of the Sun irradiation.Consequently,ifthemagnitudeoftheSunbeamincidentonthePVpanelchanges quickly, the learning machine yields the predicted MPP to control a chopper circuit. The simulationresults suggestedthat theproposed MPPTmethod canrealizequickMPPT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信