EEWA:多核架构中节能的工作负载感知任务调度

Quan Chen, Long Zheng, M. Guo, Zhiyi Huang
{"title":"EEWA:多核架构中节能的工作负载感知任务调度","authors":"Quan Chen, Long Zheng, M. Guo, Zhiyi Huang","doi":"10.1109/IPDPSW.2014.75","DOIUrl":null,"url":null,"abstract":"Modern multi-core architectures offer Dynamic Voltage and Frequency Scaling (DVFS) that can dynamically adjust the operating frequency of each core for energy saving. However, current parallel programming environments and schedulers for task-based programs do not utilize DVFS and thus suffer from energy inefficiency in multi-core processors. To reduce energy consumption while keeping high performance, this paper proposes an Energy-Efficient Workload-Aware (EEWA) task scheduler that is comprised of a workload-aware frequency adjuster and a preference-based task-stealing scheduler. Using DVFS, the workload-aware frequency adjuster can properly tune the frequencies of the cores according to the workload information of the tasks collected with online profiling. The preference-based task-stealing scheduler can then effectively balance the workloads among cores by stealing tasks according to a preference list. Experimental results show that EEWA can reduce energy consumption of task-based programs up to 29.8% with a slight performance degradation compared with existing task schedulers.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"EEWA: Energy-Efficient Workload-Aware Task Scheduling in Multi-core Architectures\",\"authors\":\"Quan Chen, Long Zheng, M. Guo, Zhiyi Huang\",\"doi\":\"10.1109/IPDPSW.2014.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern multi-core architectures offer Dynamic Voltage and Frequency Scaling (DVFS) that can dynamically adjust the operating frequency of each core for energy saving. However, current parallel programming environments and schedulers for task-based programs do not utilize DVFS and thus suffer from energy inefficiency in multi-core processors. To reduce energy consumption while keeping high performance, this paper proposes an Energy-Efficient Workload-Aware (EEWA) task scheduler that is comprised of a workload-aware frequency adjuster and a preference-based task-stealing scheduler. Using DVFS, the workload-aware frequency adjuster can properly tune the frequencies of the cores according to the workload information of the tasks collected with online profiling. The preference-based task-stealing scheduler can then effectively balance the workloads among cores by stealing tasks according to a preference list. Experimental results show that EEWA can reduce energy consumption of task-based programs up to 29.8% with a slight performance degradation compared with existing task schedulers.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

现代多核架构提供动态电压和频率缩放(DVFS),可以动态调整每个核的工作频率以节省能源。然而,当前基于任务的程序的并行编程环境和调度器没有利用DVFS,因此在多核处理器中存在能源效率低下的问题。为了在保持高性能的同时降低能耗,本文提出了一种节能的工作负载感知任务调度器(EEWA),该调度器由工作负载感知频率调节器和基于偏好的任务窃取调度器组成。使用DVFS,工作负载感知频率调节器可以根据使用在线分析收集的任务的工作负载信息适当地调优核心的频率。然后,基于首选项的任务窃取调度器可以根据首选项列表窃取任务,从而有效地平衡内核之间的工作负载。实验结果表明,与现有的任务调度器相比,EEWA可以将基于任务的程序的能耗降低29.8%,但性能略有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEWA: Energy-Efficient Workload-Aware Task Scheduling in Multi-core Architectures
Modern multi-core architectures offer Dynamic Voltage and Frequency Scaling (DVFS) that can dynamically adjust the operating frequency of each core for energy saving. However, current parallel programming environments and schedulers for task-based programs do not utilize DVFS and thus suffer from energy inefficiency in multi-core processors. To reduce energy consumption while keeping high performance, this paper proposes an Energy-Efficient Workload-Aware (EEWA) task scheduler that is comprised of a workload-aware frequency adjuster and a preference-based task-stealing scheduler. Using DVFS, the workload-aware frequency adjuster can properly tune the frequencies of the cores according to the workload information of the tasks collected with online profiling. The preference-based task-stealing scheduler can then effectively balance the workloads among cores by stealing tasks according to a preference list. Experimental results show that EEWA can reduce energy consumption of task-based programs up to 29.8% with a slight performance degradation compared with existing task schedulers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信