{"title":"超庞加莱不变宇宙中的不消失宇宙常数效应","authors":"A. V. Aminova, Mikhail Kh. Lyulinsky","doi":"10.17238/issn2226-8812.2019.3.11-19","DOIUrl":null,"url":null,"abstract":"In \\cite{AminMoc} we defined the Minkowski superspace $SM(4,4\\vert \\lambda, \\mu)$ as the invariant of the Poincare supergroup of supertransformations, which is a solution of Killing superequations. \nIn the present paper we use formulae of super-Riemannian geometry developed by V.~P. Akulov and D.~V. Volkov \\cite{AkVolk} for calculating a superconnection and a supercurvature of Minkowski superspace. We show that the curvature of the Minkowski superspace does not vanish, and the Minkowski supermetric is the solution of the Einstein superequations, so the eight-dimensional curved super-Poincare invariant superuniverse $SM(4,4\\vert \\lambda, \\mu)$ is supported by purely fermionic stress-energy supertensor with two real parameters $\\lambda$, $\\mu$, and, moreover, it has non-vanishing cosmological constant $\\Lambda=12/(\\lambda^2 -\\mu^2)$ defined by these parameters that could mean a new look at the cosmological constant problem.","PeriodicalId":445582,"journal":{"name":"SPACE, TIME AND FUNDAMENTAL INTERACTIONS","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NON-VANISHING COSMO LOGICAL CONSTANT EFFECT IN SUPER-POINCARE-INVARIANT UNIVERSE\",\"authors\":\"A. V. Aminova, Mikhail Kh. Lyulinsky\",\"doi\":\"10.17238/issn2226-8812.2019.3.11-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In \\\\cite{AminMoc} we defined the Minkowski superspace $SM(4,4\\\\vert \\\\lambda, \\\\mu)$ as the invariant of the Poincare supergroup of supertransformations, which is a solution of Killing superequations. \\nIn the present paper we use formulae of super-Riemannian geometry developed by V.~P. Akulov and D.~V. Volkov \\\\cite{AkVolk} for calculating a superconnection and a supercurvature of Minkowski superspace. We show that the curvature of the Minkowski superspace does not vanish, and the Minkowski supermetric is the solution of the Einstein superequations, so the eight-dimensional curved super-Poincare invariant superuniverse $SM(4,4\\\\vert \\\\lambda, \\\\mu)$ is supported by purely fermionic stress-energy supertensor with two real parameters $\\\\lambda$, $\\\\mu$, and, moreover, it has non-vanishing cosmological constant $\\\\Lambda=12/(\\\\lambda^2 -\\\\mu^2)$ defined by these parameters that could mean a new look at the cosmological constant problem.\",\"PeriodicalId\":445582,\"journal\":{\"name\":\"SPACE, TIME AND FUNDAMENTAL INTERACTIONS\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPACE, TIME AND FUNDAMENTAL INTERACTIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17238/issn2226-8812.2019.3.11-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPACE, TIME AND FUNDAMENTAL INTERACTIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17238/issn2226-8812.2019.3.11-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在\cite{AminMoc}中,我们将Minkowski超空间$SM(4,4\vert \lambda, \mu)$定义为超变换的庞加莱超群的不变量,它是Killing超方程的一个解。本文利用V. P. Akulov和D. V. Volkov \cite{AkVolk}提出的超黎曼几何公式计算了闵可夫斯基超空间的超连接和超曲率。我们证明了闵可夫斯基超空间的曲率不会消失,并且闵可夫斯基超量是爱因斯坦超方程的解,因此八维弯曲的超庞加莱不变量超宇宙$SM(4,4\vert \lambda, \mu)$由具有两个实参数$\lambda$, $\mu$的纯费米子应力-能量超张量支持,并且,它有不消失的宇宙常数$\Lambda=12/(\lambda^2 -\mu^2)$由这些参数定义,这可能意味着对宇宙常数问题的新看法。
NON-VANISHING COSMO LOGICAL CONSTANT EFFECT IN SUPER-POINCARE-INVARIANT UNIVERSE
In \cite{AminMoc} we defined the Minkowski superspace $SM(4,4\vert \lambda, \mu)$ as the invariant of the Poincare supergroup of supertransformations, which is a solution of Killing superequations.
In the present paper we use formulae of super-Riemannian geometry developed by V.~P. Akulov and D.~V. Volkov \cite{AkVolk} for calculating a superconnection and a supercurvature of Minkowski superspace. We show that the curvature of the Minkowski superspace does not vanish, and the Minkowski supermetric is the solution of the Einstein superequations, so the eight-dimensional curved super-Poincare invariant superuniverse $SM(4,4\vert \lambda, \mu)$ is supported by purely fermionic stress-energy supertensor with two real parameters $\lambda$, $\mu$, and, moreover, it has non-vanishing cosmological constant $\Lambda=12/(\lambda^2 -\mu^2)$ defined by these parameters that could mean a new look at the cosmological constant problem.