混合室流动结构的CFD分析

S. Cândido, J. Marques, A. Tomé, A. Amorim, Stefan K. Weber
{"title":"混合室流动结构的CFD分析","authors":"S. Cândido, J. Marques, A. Tomé, A. Amorim, Stefan K. Weber","doi":"10.1115/imece2019-11747","DOIUrl":null,"url":null,"abstract":"\n Special mixing chambers are usually used to perform scientific experiments or for routine industrial production processes. This is the case, typically, of fan mixers in a baffled tank. Mixing chambers comprise, among other alternative elements, two counter-rotating fans at the bottom and top. These will eventually allow a mixing effect on the chamber with an adequate level of uniformity. Herein a computational flow simulation is performed for the mixing conditions of air and SO2 inside the chamber used in the CLOUD experiment, by studying in detail the flow structures and uniformity inside the chamber. This Unsteady Navier-Stokes computation is performed using the kω-SST and SAS turbulence models. A first validation step is performed by using an experimental test case, comprising a T-junction geometry, that performs the mixing of air and N2. Following this validation step a detailed analysis of the flow structures inside the 3D chamber is conducted, and specific insights are given regarding the flow uniformity. A detailed analysis of the computed mixing flow structures for the SST and SAS turbulence models is also described. It is shown that the SAS model captures with more detail the macro and meso-mmixing process with an accuracy of, at most, 6%. This value can be further reduced to values around 2% by resorting to high density meshes, with the associated computational burden.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Analysis of Flow Structures in a Mixing Chamber\",\"authors\":\"S. Cândido, J. Marques, A. Tomé, A. Amorim, Stefan K. Weber\",\"doi\":\"10.1115/imece2019-11747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Special mixing chambers are usually used to perform scientific experiments or for routine industrial production processes. This is the case, typically, of fan mixers in a baffled tank. Mixing chambers comprise, among other alternative elements, two counter-rotating fans at the bottom and top. These will eventually allow a mixing effect on the chamber with an adequate level of uniformity. Herein a computational flow simulation is performed for the mixing conditions of air and SO2 inside the chamber used in the CLOUD experiment, by studying in detail the flow structures and uniformity inside the chamber. This Unsteady Navier-Stokes computation is performed using the kω-SST and SAS turbulence models. A first validation step is performed by using an experimental test case, comprising a T-junction geometry, that performs the mixing of air and N2. Following this validation step a detailed analysis of the flow structures inside the 3D chamber is conducted, and specific insights are given regarding the flow uniformity. A detailed analysis of the computed mixing flow structures for the SST and SAS turbulence models is also described. It is shown that the SAS model captures with more detail the macro and meso-mmixing process with an accuracy of, at most, 6%. This value can be further reduced to values around 2% by resorting to high density meshes, with the associated computational burden.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特殊的混合室通常用于进行科学实验或常规工业生产过程。这是典型的情况,在一个挡板槽风扇混合器。混合室包括在底部和顶部的两个反向旋转风扇。这些将最终允许在腔室的混合效果与适当的均匀水平。本文对CLOUD实验中空气与SO2在实验室内的混合情况进行了计算流动模拟,详细研究了实验室内的流动结构和均匀性。采用kω-SST和SAS湍流模型进行了非定常Navier-Stokes计算。第一个验证步骤是通过使用一个实验测试用例来执行,包括一个t形结几何,它执行空气和N2的混合。在此验证步骤之后,对3D腔室内的流动结构进行了详细分析,并给出了关于流动均匀性的具体见解。本文还详细分析了SST和SAS湍流模型计算的混合流结构。结果表明,SAS模型更详细地捕捉了宏观和中观混合过程,精度最高可达6%。这个值可以通过高密度网格进一步降低到2%左右的值,并带来相关的计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Analysis of Flow Structures in a Mixing Chamber
Special mixing chambers are usually used to perform scientific experiments or for routine industrial production processes. This is the case, typically, of fan mixers in a baffled tank. Mixing chambers comprise, among other alternative elements, two counter-rotating fans at the bottom and top. These will eventually allow a mixing effect on the chamber with an adequate level of uniformity. Herein a computational flow simulation is performed for the mixing conditions of air and SO2 inside the chamber used in the CLOUD experiment, by studying in detail the flow structures and uniformity inside the chamber. This Unsteady Navier-Stokes computation is performed using the kω-SST and SAS turbulence models. A first validation step is performed by using an experimental test case, comprising a T-junction geometry, that performs the mixing of air and N2. Following this validation step a detailed analysis of the flow structures inside the 3D chamber is conducted, and specific insights are given regarding the flow uniformity. A detailed analysis of the computed mixing flow structures for the SST and SAS turbulence models is also described. It is shown that the SAS model captures with more detail the macro and meso-mmixing process with an accuracy of, at most, 6%. This value can be further reduced to values around 2% by resorting to high density meshes, with the associated computational burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信