动态网络模型

M. Lahroodi
{"title":"动态网络模型","authors":"M. Lahroodi","doi":"10.1109/ACC.2016.7525384","DOIUrl":null,"url":null,"abstract":"The Dynamic Network Model (DNM) approach represents the physical model of dynamic systems in a network framework. The DNM approach has two main roots, namely, bond graph and Artificial Neural Networks (ANNs). This method employs the concepts of effort and flow to create the building blocks of network structure. The proposed DNM approach can be used in different applications, such as direct simulation, system identification, and design control systems. Other applications include analyzing interacting systems and modeling linear and nonlinear systems. The main advantages of DNM method include obtaining approximated difference equations, revealing possible drawbacks of backpropagation algorithm, and respecting Occam's razor principle.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Network Models\",\"authors\":\"M. Lahroodi\",\"doi\":\"10.1109/ACC.2016.7525384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dynamic Network Model (DNM) approach represents the physical model of dynamic systems in a network framework. The DNM approach has two main roots, namely, bond graph and Artificial Neural Networks (ANNs). This method employs the concepts of effort and flow to create the building blocks of network structure. The proposed DNM approach can be used in different applications, such as direct simulation, system identification, and design control systems. Other applications include analyzing interacting systems and modeling linear and nonlinear systems. The main advantages of DNM method include obtaining approximated difference equations, revealing possible drawbacks of backpropagation algorithm, and respecting Occam's razor principle.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7525384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

动态网络模型(DNM)方法表示网络框架中动态系统的物理模型。DNM方法有两个主要的根,即键图和人工神经网络(ann)。该方法采用了努力和流的概念来创建网络结构的构建块。所提出的DNM方法可用于不同的应用,例如直接仿真、系统识别和设计控制系统。其他应用包括分析交互系统和建模线性和非线性系统。DNM方法的主要优点包括获得近似差分方程,揭示反向传播算法可能存在的缺陷,以及尊重奥卡姆剃刀原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Network Models
The Dynamic Network Model (DNM) approach represents the physical model of dynamic systems in a network framework. The DNM approach has two main roots, namely, bond graph and Artificial Neural Networks (ANNs). This method employs the concepts of effort and flow to create the building blocks of network structure. The proposed DNM approach can be used in different applications, such as direct simulation, system identification, and design control systems. Other applications include analyzing interacting systems and modeling linear and nonlinear systems. The main advantages of DNM method include obtaining approximated difference equations, revealing possible drawbacks of backpropagation algorithm, and respecting Occam's razor principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信