在入门编程MOOC中分析学生代码轨迹

Ayesha Bajwa, Erik Hemberg, Ana Bell, Una-May O’Reilly
{"title":"在入门编程MOOC中分析学生代码轨迹","authors":"Ayesha Bajwa, Erik Hemberg, Ana Bell, Una-May O’Reilly","doi":"10.1145/3330430.3333646","DOIUrl":null,"url":null,"abstract":"Understanding student behavior in Massive Open Online Courses (MOOCs) can help us make online learning more beneficial for students. We investigate student code trajectories on the individual problem level in an MITx MOOC teaching introductory programming in Python, using keyword occurrence features associated with code submissions to represent these trajectories. Since code is so problem-specific, we develop gold standard solutions for comparison. Anecdotal observations on individual student trajectories reveal distinct behaviors which may correlate with prior experience level. We build models to correlate these trajectories with student characteristics and behaviors of interest, specifically prior experience level and video engagement. Generative modeling allows us to probe the space of submitted solutions and trajectories and explore these correlations.","PeriodicalId":336528,"journal":{"name":"2019 IEEE Learning With MOOCS (LWMOOCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analyzing Student Code Trajectories in an Introductory Programming MOOC\",\"authors\":\"Ayesha Bajwa, Erik Hemberg, Ana Bell, Una-May O’Reilly\",\"doi\":\"10.1145/3330430.3333646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding student behavior in Massive Open Online Courses (MOOCs) can help us make online learning more beneficial for students. We investigate student code trajectories on the individual problem level in an MITx MOOC teaching introductory programming in Python, using keyword occurrence features associated with code submissions to represent these trajectories. Since code is so problem-specific, we develop gold standard solutions for comparison. Anecdotal observations on individual student trajectories reveal distinct behaviors which may correlate with prior experience level. We build models to correlate these trajectories with student characteristics and behaviors of interest, specifically prior experience level and video engagement. Generative modeling allows us to probe the space of submitted solutions and trajectories and explore these correlations.\",\"PeriodicalId\":336528,\"journal\":{\"name\":\"2019 IEEE Learning With MOOCS (LWMOOCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Learning With MOOCS (LWMOOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330430.3333646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Learning With MOOCS (LWMOOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330430.3333646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

了解大规模在线开放课程(MOOCs)中学生的行为可以帮助我们使在线学习对学生更有益。我们在麻省理工学院的MOOC课程中研究了学生在个人问题层面上的代码轨迹,使用与代码提交相关的关键字出现特征来表示这些轨迹。由于代码是特定于问题的,因此我们开发了黄金标准解决方案进行比较。个别学生轨迹的轶事观察揭示了不同的行为可能与先前的经验水平有关。我们建立模型,将这些轨迹与学生的特征和感兴趣的行为联系起来,特别是之前的经验水平和视频参与。生成建模允许我们探测提交的解决方案和轨迹的空间,并探索这些相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Student Code Trajectories in an Introductory Programming MOOC
Understanding student behavior in Massive Open Online Courses (MOOCs) can help us make online learning more beneficial for students. We investigate student code trajectories on the individual problem level in an MITx MOOC teaching introductory programming in Python, using keyword occurrence features associated with code submissions to represent these trajectories. Since code is so problem-specific, we develop gold standard solutions for comparison. Anecdotal observations on individual student trajectories reveal distinct behaviors which may correlate with prior experience level. We build models to correlate these trajectories with student characteristics and behaviors of interest, specifically prior experience level and video engagement. Generative modeling allows us to probe the space of submitted solutions and trajectories and explore these correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信