重排和信息理论的不平等

J. Melbourne
{"title":"重排和信息理论的不平等","authors":"J. Melbourne","doi":"10.1109/ALLERTON.2018.8636000","DOIUrl":null,"url":null,"abstract":"We investigate the interaction of functional rearrangements with information theoretic inequalities. In particular we will prove the Relative Fisher information from Gaussianity decreases on half-space rearrangement, as a consequence we get a qualitative sharpening of the usual Gaussian log-Sobolev inequality. Additionally, we compare this half space rearrangement’s interaction with distance from Gaussianity, with the spherical rearrangement’s role in entropy power inequalities.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rearrangements and information theoretic inequalities\",\"authors\":\"J. Melbourne\",\"doi\":\"10.1109/ALLERTON.2018.8636000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the interaction of functional rearrangements with information theoretic inequalities. In particular we will prove the Relative Fisher information from Gaussianity decreases on half-space rearrangement, as a consequence we get a qualitative sharpening of the usual Gaussian log-Sobolev inequality. Additionally, we compare this half space rearrangement’s interaction with distance from Gaussianity, with the spherical rearrangement’s role in entropy power inequalities.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8636000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了功能重排与信息理论不等式的相互作用。特别地,我们将证明来自高斯的相对Fisher信息在半空间重排时减少,因此我们得到了通常的高斯对数-索博列夫不等式的定性锐化。此外,我们比较了这种半空间重排与离高斯距离的相互作用,以及球面重排在熵幂不等式中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearrangements and information theoretic inequalities
We investigate the interaction of functional rearrangements with information theoretic inequalities. In particular we will prove the Relative Fisher information from Gaussianity decreases on half-space rearrangement, as a consequence we get a qualitative sharpening of the usual Gaussian log-Sobolev inequality. Additionally, we compare this half space rearrangement’s interaction with distance from Gaussianity, with the spherical rearrangement’s role in entropy power inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信