数据并行任务图的新型列表调度策略

Yang Liu, Lin Meng, Ittetsu Taniguchi, H. Tomiyama
{"title":"数据并行任务图的新型列表调度策略","authors":"Yang Liu, Lin Meng, Ittetsu Taniguchi, H. Tomiyama","doi":"10.15803/IJNC.4.2_279","DOIUrl":null,"url":null,"abstract":"This paper studies task scheduling algorithms which schedule a set of tasks on multiple cores so that the total scheduling length is minimized. Most of the algorithms developed in the past assume that a task is executed on a single core. Unlike the previous algorithms, the algorithms studied in this paper allow a task to be executed on multiple cores. This paper proposes six algorithms. All of the six algorithms are based on list scheduling, but the strategy for priority assignment is different. In our experiments, the six algorithms as well as an integer linear programming method are evaluated.Â","PeriodicalId":270166,"journal":{"name":"Int. J. Netw. Comput.","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Novel List Scheduling Strategies for Data Parallelism Task Graphs\",\"authors\":\"Yang Liu, Lin Meng, Ittetsu Taniguchi, H. Tomiyama\",\"doi\":\"10.15803/IJNC.4.2_279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies task scheduling algorithms which schedule a set of tasks on multiple cores so that the total scheduling length is minimized. Most of the algorithms developed in the past assume that a task is executed on a single core. Unlike the previous algorithms, the algorithms studied in this paper allow a task to be executed on multiple cores. This paper proposes six algorithms. All of the six algorithms are based on list scheduling, but the strategy for priority assignment is different. In our experiments, the six algorithms as well as an integer linear programming method are evaluated.Â\",\"PeriodicalId\":270166,\"journal\":{\"name\":\"Int. J. Netw. Comput.\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Netw. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15803/IJNC.4.2_279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Netw. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15803/IJNC.4.2_279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文研究了任务调度算法,该算法将一组任务调度到多个核上,使调度总长度最小。过去开发的大多数算法都假设任务是在单核上执行的。与以往的算法不同,本文研究的算法允许在多个核心上执行任务。本文提出了六种算法。这六种算法都基于列表调度,但优先级分配策略不同。在我们的实验中,这六种算法以及一种整数线性规划方法是evaluated.Â
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel List Scheduling Strategies for Data Parallelism Task Graphs
This paper studies task scheduling algorithms which schedule a set of tasks on multiple cores so that the total scheduling length is minimized. Most of the algorithms developed in the past assume that a task is executed on a single core. Unlike the previous algorithms, the algorithms studied in this paper allow a task to be executed on multiple cores. This paper proposes six algorithms. All of the six algorithms are based on list scheduling, but the strategy for priority assignment is different. In our experiments, the six algorithms as well as an integer linear programming method are evaluated.Â
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信