面向全闪存存储系统的企业级开源数据缩减架构

M. Ajdari, Patrick Raaf, Mostafa Kishani, Reza Salkhordeh, H. Asadi, A. Brinkmann
{"title":"面向全闪存存储系统的企业级开源数据缩减架构","authors":"M. Ajdari, Patrick Raaf, Mostafa Kishani, Reza Salkhordeh, H. Asadi, A. Brinkmann","doi":"10.1145/3489048.3530963","DOIUrl":null,"url":null,"abstract":"Data reduction technologies have proven their effectiveness to decrease the ever-growing demands on storage system capacities, but also introduce new complexity in the system I/O stack that can easily invalidate well-known best practices. In this paper, we conduct an extensive set of experiments on an enterprise all-flash storage (AFS) system equipped with an open-source data reduction module, i.e., RedHat VDO, and reveal novel observations on the performance gap between the state-of-the-art and the optimal AFS stack with integrated data reduction. We then offer cross-layer optimizations to enhance the performance of AFS, which range from deriving new optimal hardware RAID configurations up to modifications of the enterprise storage stack tailored to the major bottlenecks observed. By implementing all proposed optimizations in an enterprise AFS, we show up to 12.5x speedup over the baseline AFS with integrated data reduction, and up to 57x performance/cost improvement over an optimized AFS (with no data reduction) for 100% write, high-reduction workload scenarios.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Enterprise-Grade Open-Source Data Reduction Architecture for All-Flash Storage Systems\",\"authors\":\"M. Ajdari, Patrick Raaf, Mostafa Kishani, Reza Salkhordeh, H. Asadi, A. Brinkmann\",\"doi\":\"10.1145/3489048.3530963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data reduction technologies have proven their effectiveness to decrease the ever-growing demands on storage system capacities, but also introduce new complexity in the system I/O stack that can easily invalidate well-known best practices. In this paper, we conduct an extensive set of experiments on an enterprise all-flash storage (AFS) system equipped with an open-source data reduction module, i.e., RedHat VDO, and reveal novel observations on the performance gap between the state-of-the-art and the optimal AFS stack with integrated data reduction. We then offer cross-layer optimizations to enhance the performance of AFS, which range from deriving new optimal hardware RAID configurations up to modifications of the enterprise storage stack tailored to the major bottlenecks observed. By implementing all proposed optimizations in an enterprise AFS, we show up to 12.5x speedup over the baseline AFS with integrated data reduction, and up to 57x performance/cost improvement over an optimized AFS (with no data reduction) for 100% write, high-reduction workload scenarios.\",\"PeriodicalId\":264598,\"journal\":{\"name\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489048.3530963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3530963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据缩减技术已经证明了它们在降低对存储系统容量不断增长的需求方面的有效性,但也在系统I/O堆栈中引入了新的复杂性,这很容易使众所周知的最佳实践失效。在本文中,我们在配备开源数据缩减模块(即RedHat VDO)的企业全闪存(AFS)系统上进行了一系列广泛的实验,并揭示了具有集成数据缩减的最先进和最优AFS堆栈之间性能差距的新观察结果。然后,我们提供跨层优化以增强AFS的性能,范围从派生新的最优硬件RAID配置到根据观察到的主要瓶颈对企业存储堆栈进行修改。通过在企业AFS中实现所有建议的优化,我们发现在集成数据减少的情况下,与基线AFS相比,速度提高了12.5倍,在100%写入、高减少的工作负载场景下,与优化的AFS(没有数据减少)相比,性能/成本提高了57倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enterprise-Grade Open-Source Data Reduction Architecture for All-Flash Storage Systems
Data reduction technologies have proven their effectiveness to decrease the ever-growing demands on storage system capacities, but also introduce new complexity in the system I/O stack that can easily invalidate well-known best practices. In this paper, we conduct an extensive set of experiments on an enterprise all-flash storage (AFS) system equipped with an open-source data reduction module, i.e., RedHat VDO, and reveal novel observations on the performance gap between the state-of-the-art and the optimal AFS stack with integrated data reduction. We then offer cross-layer optimizations to enhance the performance of AFS, which range from deriving new optimal hardware RAID configurations up to modifications of the enterprise storage stack tailored to the major bottlenecks observed. By implementing all proposed optimizations in an enterprise AFS, we show up to 12.5x speedup over the baseline AFS with integrated data reduction, and up to 57x performance/cost improvement over an optimized AFS (with no data reduction) for 100% write, high-reduction workload scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信