人类学习和机器学习:搭建桥梁还是整合?

S. Russ
{"title":"人类学习和机器学习:搭建桥梁还是整合?","authors":"S. Russ","doi":"10.1109/KST.2016.7440538","DOIUrl":null,"url":null,"abstract":"Summary form only given. At the core of Empirical Modelling is an activity we call `making construals'. A construal is a software artefact that embodies how we think about something, or make sense of something. For example, it might be a visualisation of a car engine with gears and controls that behaves - through interaction - like the physical car. We shall show a construal of MENACE : an early example of a simple machine (made with matchboxes) that learns to improve its own performance at playing noughts and crosses. Some experts in machine learning contrast the `big data' methods of training networks with the use of explanatory models. It is proving difficult, but desirable, to integrate these approaches. We'll suggest why Empirical Modelling might offer some useful insights into this problem.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human learning and machine learning: Building bridges or integration?\",\"authors\":\"S. Russ\",\"doi\":\"10.1109/KST.2016.7440538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. At the core of Empirical Modelling is an activity we call `making construals'. A construal is a software artefact that embodies how we think about something, or make sense of something. For example, it might be a visualisation of a car engine with gears and controls that behaves - through interaction - like the physical car. We shall show a construal of MENACE : an early example of a simple machine (made with matchboxes) that learns to improve its own performance at playing noughts and crosses. Some experts in machine learning contrast the `big data' methods of training networks with the use of explanatory models. It is proving difficult, but desirable, to integrate these approaches. We'll suggest why Empirical Modelling might offer some useful insights into this problem.\",\"PeriodicalId\":350687,\"journal\":{\"name\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST.2016.7440538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。经验模型的核心是一种我们称之为“制造识解”的活动。解释是一种软件产物,它体现了我们如何思考某事,或如何理解某事。例如,它可能是一个带有齿轮和控制装置的汽车引擎的可视化,通过交互,它的行为就像实体汽车一样。我们将展示《威胁》的解释:一个早期的简单机器(由火柴盒制成)的例子,它学会了提高自己在玩零和交叉游戏时的表现。一些机器学习专家将训练网络的“大数据”方法与解释模型的使用进行了对比。事实证明,整合这些方法是困难的,但也是可取的。我们将提出为什么经验模型可能会为这个问题提供一些有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human learning and machine learning: Building bridges or integration?
Summary form only given. At the core of Empirical Modelling is an activity we call `making construals'. A construal is a software artefact that embodies how we think about something, or make sense of something. For example, it might be a visualisation of a car engine with gears and controls that behaves - through interaction - like the physical car. We shall show a construal of MENACE : an early example of a simple machine (made with matchboxes) that learns to improve its own performance at playing noughts and crosses. Some experts in machine learning contrast the `big data' methods of training networks with the use of explanatory models. It is proving difficult, but desirable, to integrate these approaches. We'll suggest why Empirical Modelling might offer some useful insights into this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信