一种基于语义的文本分类器

M. Ganiz, Melike Tutkan, S. Akyokuş
{"title":"一种基于语义的文本分类器","authors":"M. Ganiz, Melike Tutkan, S. Akyokuş","doi":"10.1109/INISTA.2015.7276788","DOIUrl":null,"url":null,"abstract":"Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.","PeriodicalId":136707,"journal":{"name":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A novel classifier based on meaning for text classification\",\"authors\":\"M. Ganiz, Melike Tutkan, S. Akyokuş\",\"doi\":\"10.1109/INISTA.2015.7276788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.\",\"PeriodicalId\":136707,\"journal\":{\"name\":\"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2015.7276788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2015.7276788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

文本分类是文本挖掘的关键方法之一。文本分类通常采用机器学习领域的传统分类算法。这些算法主要是为结构化数据设计的。本文提出了一种新的文本数据分类器,称为监督意义分类器(SMC)。新的SMC分类器采用了基于格式塔理论中的亥姆霍兹原理的意义测度。在SMC中,计算类上下文中术语的意义,并将其用于文档的分类。实验结果表明,在训练数据有限的情况下,新的SMC分类器优于传统的多项式Naïve贝叶斯(MNB)和支持向量机(SVM)分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel classifier based on meaning for text classification
Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信