{"title":"一种基于语义的文本分类器","authors":"M. Ganiz, Melike Tutkan, S. Akyokuş","doi":"10.1109/INISTA.2015.7276788","DOIUrl":null,"url":null,"abstract":"Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.","PeriodicalId":136707,"journal":{"name":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A novel classifier based on meaning for text classification\",\"authors\":\"M. Ganiz, Melike Tutkan, S. Akyokuş\",\"doi\":\"10.1109/INISTA.2015.7276788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.\",\"PeriodicalId\":136707,\"journal\":{\"name\":\"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2015.7276788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2015.7276788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel classifier based on meaning for text classification
Text classification is one of the key methods used in text mining. Generally, traditional classification algorithms from machine learning field are used in text classification. These algorithms are primarily designed for structured data. In this paper, we propose a new classifier for textual data, called Supervised Meaning Classifier (SMC). The new SMC classifier uses meaning measure, which is based on Helmholtz principle from Gestalt Theory. In SMC, meaningfulness of terms in the context of classes are calculated and used for classification of a document. Experiment results show that new SMC classifier outperforms traditional classifiers of Multinomial Naïve Bayes (MNB) and Support Vector Machine (SVM) especially when the training data limited.