基于DCGAN网络的海洋数据集设计与实现

Jiajing Wu, Yazhen Gu, Nannan Li, Tang Huo, Jinlei Zhang
{"title":"基于DCGAN网络的海洋数据集设计与实现","authors":"Jiajing Wu, Yazhen Gu, Nannan Li, Tang Huo, Jinlei Zhang","doi":"10.1109/scset55041.2022.00065","DOIUrl":null,"url":null,"abstract":"In this paper, the deep learning method is applied to the ship detection SAR datasets to enlarge the existing SAR images of ships.This paper first introduces the basic knowledge of convolutional neural networks, and also introduces the common convolutional neural network structure.Secondly, this paper introduces the generative adversarial network GAN,, analyzes the GAN principle and network structure according to the objective function, introduces the training method of the GAN model, and analyzes the advantages and disadvantages of GAN.This introduces the DCGAN network model that combines the above two, analyzes its basic knowledge and network structure, and the improvement of GAN model, and introduces the training process in detail.Finally, we compare the loss function images generated by DCGAN and GAN and summarize the lessons.","PeriodicalId":446933,"journal":{"name":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Implementation of Marine Datasets Based on DCGAN Network\",\"authors\":\"Jiajing Wu, Yazhen Gu, Nannan Li, Tang Huo, Jinlei Zhang\",\"doi\":\"10.1109/scset55041.2022.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the deep learning method is applied to the ship detection SAR datasets to enlarge the existing SAR images of ships.This paper first introduces the basic knowledge of convolutional neural networks, and also introduces the common convolutional neural network structure.Secondly, this paper introduces the generative adversarial network GAN,, analyzes the GAN principle and network structure according to the objective function, introduces the training method of the GAN model, and analyzes the advantages and disadvantages of GAN.This introduces the DCGAN network model that combines the above two, analyzes its basic knowledge and network structure, and the improvement of GAN model, and introduces the training process in detail.Finally, we compare the loss function images generated by DCGAN and GAN and summarize the lessons.\",\"PeriodicalId\":446933,\"journal\":{\"name\":\"2022 International Seminar on Computer Science and Engineering Technology (SCSET)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Seminar on Computer Science and Engineering Technology (SCSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scset55041.2022.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scset55041.2022.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将深度学习方法应用于船舶检测SAR数据集,对已有的船舶SAR图像进行放大。本文首先介绍了卷积神经网络的基本知识,并介绍了常见的卷积神经网络结构。其次,介绍了生成式对抗网络GAN,根据目标函数分析了GAN的原理和网络结构,介绍了GAN模型的训练方法,并分析了GAN的优缺点。本文介绍了将以上两者结合起来的DCGAN网络模型,分析了其基本知识和网络结构,并对GAN模型进行了改进,详细介绍了训练过程。最后,我们比较了DCGAN和GAN生成的损失函数图像,并总结了经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of Marine Datasets Based on DCGAN Network
In this paper, the deep learning method is applied to the ship detection SAR datasets to enlarge the existing SAR images of ships.This paper first introduces the basic knowledge of convolutional neural networks, and also introduces the common convolutional neural network structure.Secondly, this paper introduces the generative adversarial network GAN,, analyzes the GAN principle and network structure according to the objective function, introduces the training method of the GAN model, and analyzes the advantages and disadvantages of GAN.This introduces the DCGAN network model that combines the above two, analyzes its basic knowledge and network structure, and the improvement of GAN model, and introduces the training process in detail.Finally, we compare the loss function images generated by DCGAN and GAN and summarize the lessons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信