ARFIMA模型中阈值效应的检验:在美国失业率数据中的应用

A. Lahiani, O. Scaillet, O. Scaillet
{"title":"ARFIMA模型中阈值效应的检验:在美国失业率数据中的应用","authors":"A. Lahiani, O. Scaillet, O. Scaillet","doi":"10.2139/ssrn.1311866","DOIUrl":null,"url":null,"abstract":"Macroeconomic time series often involve a threshold effect in their ARMA representation, and exhibit long memory features. In this paper we introduce a new class of threshold ARFIMA models to account for this. The threshold effect is introduced in the autoregressive and/or the fractional integration parameters, and can be tested for using LM tests. Monte Carlo experiments show the desirable finite sample size and power of the test with an exact maximum likelihood estimator of the long memory parameter. Simulations also show that a model selection strategy is available to discriminate between the competing threshold ARFIMA models. The methodology is applied to US unemployment rate data where we find a significant threshold effect in the ARFIMA representation and a better forecasting performance relative to TAR and symmetric ARFIMA models.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing for Threshold Effect in ARFIMA Models: Application to US Unemployment Rate Data\",\"authors\":\"A. Lahiani, O. Scaillet, O. Scaillet\",\"doi\":\"10.2139/ssrn.1311866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macroeconomic time series often involve a threshold effect in their ARMA representation, and exhibit long memory features. In this paper we introduce a new class of threshold ARFIMA models to account for this. The threshold effect is introduced in the autoregressive and/or the fractional integration parameters, and can be tested for using LM tests. Monte Carlo experiments show the desirable finite sample size and power of the test with an exact maximum likelihood estimator of the long memory parameter. Simulations also show that a model selection strategy is available to discriminate between the competing threshold ARFIMA models. The methodology is applied to US unemployment rate data where we find a significant threshold effect in the ARFIMA representation and a better forecasting performance relative to TAR and symmetric ARFIMA models.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1311866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1311866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

宏观经济时间序列在其ARMA表示中经常涉及阈值效应,并表现出长记忆特征。在本文中,我们引入了一类新的阈值ARFIMA模型来解释这一点。阈值效应在自回归和/或分数积分参数中引入,并且可以使用LM测试进行测试。蒙特卡罗实验表明,用长记忆参数的精确极大似然估计,该测试具有理想的有限样本量和功率。仿真结果表明,模型选择策略可用于区分竞争阈值ARFIMA模型。该方法应用于美国失业率数据,我们发现ARFIMA表示中存在显著的阈值效应,并且相对于TAR和对称ARFIMA模型具有更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing for Threshold Effect in ARFIMA Models: Application to US Unemployment Rate Data
Macroeconomic time series often involve a threshold effect in their ARMA representation, and exhibit long memory features. In this paper we introduce a new class of threshold ARFIMA models to account for this. The threshold effect is introduced in the autoregressive and/or the fractional integration parameters, and can be tested for using LM tests. Monte Carlo experiments show the desirable finite sample size and power of the test with an exact maximum likelihood estimator of the long memory parameter. Simulations also show that a model selection strategy is available to discriminate between the competing threshold ARFIMA models. The methodology is applied to US unemployment rate data where we find a significant threshold effect in the ARFIMA representation and a better forecasting performance relative to TAR and symmetric ARFIMA models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信