{"title":"股票长期预期收益的横截面","authors":"P. Geertsema, Helen Lu","doi":"10.2139/ssrn.3774548","DOIUrl":null,"url":null,"abstract":"Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.","PeriodicalId":163739,"journal":{"name":"ERN: Model Construction & Selection (Topic)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cross-section of Long-run Expected Stock Returns\",\"authors\":\"P. Geertsema, Helen Lu\",\"doi\":\"10.2139/ssrn.3774548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.\",\"PeriodicalId\":163739,\"journal\":{\"name\":\"ERN: Model Construction & Selection (Topic)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3774548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3774548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Cross-section of Long-run Expected Stock Returns
Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.