股票长期预期收益的横截面

P. Geertsema, Helen Lu
{"title":"股票长期预期收益的横截面","authors":"P. Geertsema, Helen Lu","doi":"10.2139/ssrn.3774548","DOIUrl":null,"url":null,"abstract":"Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.","PeriodicalId":163739,"journal":{"name":"ERN: Model Construction & Selection (Topic)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cross-section of Long-run Expected Stock Returns\",\"authors\":\"P. Geertsema, Helen Lu\",\"doi\":\"10.2139/ssrn.3774548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.\",\"PeriodicalId\":163739,\"journal\":{\"name\":\"ERN: Model Construction & Selection (Topic)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3774548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3774548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用基于树的机器学习方法预测从1个月到10年的累积股票回报。在所有视界的横截面上,累积股票收益具有显著的可预测性。对冲投资组合在1年期间每月产生250个基点,在10年期间每月产生110个基点。在面板数据中,个股收益在所有层面上都具有显著的可预测性。现金流和动量相关的预测指标在短期内最为重要,而股息收益率和价值相关的预测指标在长期内更为重要。相比之下,与周转和波动有关的变量在所有视界都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cross-section of Long-run Expected Stock Returns
Abstract We predict cumulative stock returns over horizons from 1 month to 10 years using a tree-based machine learning approach. Cumulative stock returns are significantly predictable in the cross-section over all horizons. A hedge portfolio generates 250 bp/month at a 1 year horizon and 110 bp/month at a 10 year horizon. Individual stock returns are significantly predictable at all horizons in panel data. Cashflow and momentum related predictors are mostly important at shorter horizons while dividend yield and value related predictors are more important at longer horizons. By contrast, variables related to turnover and volatility are influential at all horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信