一种新型平移调谐质量阻尼器的性能评价

Md. Aktar Hossain, M. S. Miah, Jihad Miah, M. M. Hossain
{"title":"一种新型平移调谐质量阻尼器的性能评价","authors":"Md. Aktar Hossain, M. S. Miah, Jihad Miah, M. M. Hossain","doi":"10.18178/ijscer.8.2.94-100","DOIUrl":null,"url":null,"abstract":"A tuned mass damper (TMD) is a cost-effective tool for targeting the vibration mitigation of a particular mode of structures e.g. first mode of vibration. Structures like a tall building, large span bridges, and other slender structures tend to be easily excited to high amplitudes. In order to deal with the aforementioned issues, TMD could be a good option that can reduce extreme vibration very effectively. The main objective of this paper is to show the implementation of a newly developed TMD to reduce the amplitude of vibration for an excited structure. The TMD was designed such a way that its parameters such as spring stiffness, mass can be adjusted. By tuning the early mentioned parameters, its frequency also be changed to meet the requirements from the structure. In addition, this work investigates the effect of TMD by observing the dynamic response of a two-storey frame structure both experimentally and numerically. Finite element method has been used as a numerical tool to study the dynamic response of the steel frame-TMD system. The time-history (linear) analysis of the frame without (modal mass = 0%) and with TMD (modal mass = 5 and 15%) under earthquake load has carried out and the performances are evaluated and compared. It can be concluded that a significant reduction of response (i.e. displacement) is possible via the newly developed TMD. The maximum percentage of decrease in the displacement found to be reduced by 21% for the modal mass of 5% and 43% for the modal mass of 15%, respectively. Hence, it can be noted that newly developed TMD has potential to use in the real structure for vibration mitigation. ","PeriodicalId":101411,"journal":{"name":"International journal of structural and civil engineering research","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation of a Newly Developed Translational Tuned Mass Damper\",\"authors\":\"Md. Aktar Hossain, M. S. Miah, Jihad Miah, M. M. Hossain\",\"doi\":\"10.18178/ijscer.8.2.94-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tuned mass damper (TMD) is a cost-effective tool for targeting the vibration mitigation of a particular mode of structures e.g. first mode of vibration. Structures like a tall building, large span bridges, and other slender structures tend to be easily excited to high amplitudes. In order to deal with the aforementioned issues, TMD could be a good option that can reduce extreme vibration very effectively. The main objective of this paper is to show the implementation of a newly developed TMD to reduce the amplitude of vibration for an excited structure. The TMD was designed such a way that its parameters such as spring stiffness, mass can be adjusted. By tuning the early mentioned parameters, its frequency also be changed to meet the requirements from the structure. In addition, this work investigates the effect of TMD by observing the dynamic response of a two-storey frame structure both experimentally and numerically. Finite element method has been used as a numerical tool to study the dynamic response of the steel frame-TMD system. The time-history (linear) analysis of the frame without (modal mass = 0%) and with TMD (modal mass = 5 and 15%) under earthquake load has carried out and the performances are evaluated and compared. It can be concluded that a significant reduction of response (i.e. displacement) is possible via the newly developed TMD. The maximum percentage of decrease in the displacement found to be reduced by 21% for the modal mass of 5% and 43% for the modal mass of 15%, respectively. Hence, it can be noted that newly developed TMD has potential to use in the real structure for vibration mitigation. \",\"PeriodicalId\":101411,\"journal\":{\"name\":\"International journal of structural and civil engineering research\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of structural and civil engineering research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijscer.8.2.94-100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of structural and civil engineering research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijscer.8.2.94-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

调谐质量阻尼器(TMD)是一种具有成本效益的工具,用于针对结构的特定模态,例如第一模态的振动进行减振。像高层建筑、大跨度桥梁和其他细长结构这样的结构很容易被激发到高振幅。为了解决上述问题,TMD可能是一个很好的选择,可以非常有效地减少极端振动。本文的主要目的是展示一种新开发的TMD的实现,以降低受激结构的振动幅度。TMD的设计使其弹簧刚度、质量等参数可调。通过调整前面提到的参数,它的频率也可以改变,以满足结构的要求。此外,本文还通过实验和数值分析两层框架结构的动力响应,探讨了TMD的影响。本文采用有限元方法对钢框架- tmd系统的动力响应进行了数值研究。对无模态质量= 0%和有模态质量= 5%和15%的框架在地震荷载作用下的时程(线性)分析进行了评价和比较。可以得出结论,通过新开发的TMD可以显著减少响应(即位移)。当模态质量为5%时,位移的最大降幅为21%,当模态质量为15%时,位移的最大降幅为43%。因此,可以注意到,新开发的TMD具有在实际结构中用于减振的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of a Newly Developed Translational Tuned Mass Damper
A tuned mass damper (TMD) is a cost-effective tool for targeting the vibration mitigation of a particular mode of structures e.g. first mode of vibration. Structures like a tall building, large span bridges, and other slender structures tend to be easily excited to high amplitudes. In order to deal with the aforementioned issues, TMD could be a good option that can reduce extreme vibration very effectively. The main objective of this paper is to show the implementation of a newly developed TMD to reduce the amplitude of vibration for an excited structure. The TMD was designed such a way that its parameters such as spring stiffness, mass can be adjusted. By tuning the early mentioned parameters, its frequency also be changed to meet the requirements from the structure. In addition, this work investigates the effect of TMD by observing the dynamic response of a two-storey frame structure both experimentally and numerically. Finite element method has been used as a numerical tool to study the dynamic response of the steel frame-TMD system. The time-history (linear) analysis of the frame without (modal mass = 0%) and with TMD (modal mass = 5 and 15%) under earthquake load has carried out and the performances are evaluated and compared. It can be concluded that a significant reduction of response (i.e. displacement) is possible via the newly developed TMD. The maximum percentage of decrease in the displacement found to be reduced by 21% for the modal mass of 5% and 43% for the modal mass of 15%, respectively. Hence, it can be noted that newly developed TMD has potential to use in the real structure for vibration mitigation. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信