海报:区块链支持的大数据质量评估联邦边缘学习

Yalong Wu, Kewei Sha, K. Yue
{"title":"海报:区块链支持的大数据质量评估联邦边缘学习","authors":"Yalong Wu, Kewei Sha, K. Yue","doi":"10.1109/SEC54971.2022.00032","DOIUrl":null,"url":null,"abstract":"Data quality is essential to pricing big data and deciding its trading profit in digital market. Traditional machine learning-based data quality assessment methods support the valuation of data assets. Nonetheless, these methods require data to be sent over and assessed at centralized cloud, which incurs unprecedented data transmission cost and may jeopardize data privacy. To address these issues, in this poster, we propose a privacy-preserving big data quality assessment scheme (p2 QA) on the basis of blockchain and federated edge learning (FEEL). p2QA aims to notably reduce data transmission cost, accurately measure big data quality, and effectively prevent malicious parties from violating data privacy.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Blockchain-Enabled Federated Edge Learning for Big Data Quality Assessment\",\"authors\":\"Yalong Wu, Kewei Sha, K. Yue\",\"doi\":\"10.1109/SEC54971.2022.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data quality is essential to pricing big data and deciding its trading profit in digital market. Traditional machine learning-based data quality assessment methods support the valuation of data assets. Nonetheless, these methods require data to be sent over and assessed at centralized cloud, which incurs unprecedented data transmission cost and may jeopardize data privacy. To address these issues, in this poster, we propose a privacy-preserving big data quality assessment scheme (p2 QA) on the basis of blockchain and federated edge learning (FEEL). p2QA aims to notably reduce data transmission cost, accurately measure big data quality, and effectively prevent malicious parties from violating data privacy.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字市场中,数据质量是决定大数据定价和交易利润的关键。传统的基于机器学习的数据质量评估方法支持数据资产的估值。然而,这些方法需要在集中式云上发送和评估数据,这产生了前所未有的数据传输成本,并可能危及数据隐私。为了解决这些问题,在这张海报中,我们提出了一个基于区块链和联邦边缘学习(FEEL)的隐私保护大数据质量评估方案(p2 QA)。p2QA旨在显著降低数据传输成本,准确衡量大数据质量,有效防止恶意方侵犯数据隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Blockchain-Enabled Federated Edge Learning for Big Data Quality Assessment
Data quality is essential to pricing big data and deciding its trading profit in digital market. Traditional machine learning-based data quality assessment methods support the valuation of data assets. Nonetheless, these methods require data to be sent over and assessed at centralized cloud, which incurs unprecedented data transmission cost and may jeopardize data privacy. To address these issues, in this poster, we propose a privacy-preserving big data quality assessment scheme (p2 QA) on the basis of blockchain and federated edge learning (FEEL). p2QA aims to notably reduce data transmission cost, accurately measure big data quality, and effectively prevent malicious parties from violating data privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信