从具有严重误差的图像序列中恢复三维运动参数

C.-N. Lee, R. Haralick, X. Zhuang
{"title":"从具有严重误差的图像序列中恢复三维运动参数","authors":"C.-N. Lee, R. Haralick, X. Zhuang","doi":"10.1109/WVM.1989.47093","DOIUrl":null,"url":null,"abstract":"A robust algorithm to estimate 3-D motion parameters from a sequence of extremely noisy images is developed. The noise model includes correspondence mismatch errors, outliers, uniform noise, and Gaussian noise. More than 100000 controlled experiments were performed. The experimental results show that the error in the estimated 3-D parameters of the linear algorithm almost increases linearly with fraction of outliers. However, the increase for the robust algorithm is much slower, indicating its better performance and stability with data having blunders. The robust algorithm can detect the outliers, mismatching errors and blunders up to 30% of observed data. Therefore, it can be an effective tool in estimating 3-D motion parameters from multiframe time sequence imagery.<<ETX>>","PeriodicalId":342419,"journal":{"name":"[1989] Proceedings. Workshop on Visual Motion","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Recovering 3-D motion parameters from image sequences with gross errors\",\"authors\":\"C.-N. Lee, R. Haralick, X. Zhuang\",\"doi\":\"10.1109/WVM.1989.47093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust algorithm to estimate 3-D motion parameters from a sequence of extremely noisy images is developed. The noise model includes correspondence mismatch errors, outliers, uniform noise, and Gaussian noise. More than 100000 controlled experiments were performed. The experimental results show that the error in the estimated 3-D parameters of the linear algorithm almost increases linearly with fraction of outliers. However, the increase for the robust algorithm is much slower, indicating its better performance and stability with data having blunders. The robust algorithm can detect the outliers, mismatching errors and blunders up to 30% of observed data. Therefore, it can be an effective tool in estimating 3-D motion parameters from multiframe time sequence imagery.<<ETX>>\",\"PeriodicalId\":342419,\"journal\":{\"name\":\"[1989] Proceedings. Workshop on Visual Motion\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1989] Proceedings. Workshop on Visual Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WVM.1989.47093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] Proceedings. Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1989.47093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种鲁棒算法,用于从一组极噪图像中估计三维运动参数。噪声模型包括对应失配误差、异常值、均匀噪声和高斯噪声。进行了10万多次对照实验。实验结果表明,线性算法估计的三维参数误差几乎随离群值的比例线性增加。然而,鲁棒算法的增长速度要慢得多,这表明它在有错误的数据下具有更好的性能和稳定性。鲁棒算法可以检测到高达30%的观测数据的异常值、不匹配误差和错误。因此,从多帧时间序列图像中估计三维运动参数是一种有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering 3-D motion parameters from image sequences with gross errors
A robust algorithm to estimate 3-D motion parameters from a sequence of extremely noisy images is developed. The noise model includes correspondence mismatch errors, outliers, uniform noise, and Gaussian noise. More than 100000 controlled experiments were performed. The experimental results show that the error in the estimated 3-D parameters of the linear algorithm almost increases linearly with fraction of outliers. However, the increase for the robust algorithm is much slower, indicating its better performance and stability with data having blunders. The robust algorithm can detect the outliers, mismatching errors and blunders up to 30% of observed data. Therefore, it can be an effective tool in estimating 3-D motion parameters from multiframe time sequence imagery.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信