{"title":"方差风险溢价和波动率指数定价:一个简单的GARCH方法","authors":"Qiang Liu, Gaoxiu Qiao, Shuxin Guo","doi":"10.2139/ssrn.2155993","DOIUrl":null,"url":null,"abstract":"This paper assesses variance risk premium and forecasts out-of-sample VIX under GARCH(1,1), GJR, and Heston-Nandi models. With the date-t GARCH parameters estimated in a moving window fashion from 3,500 daily returns of the SP these risk-neutral parameters forecast the date-t VIX accurately with errors of not more than 0.2% on average.","PeriodicalId":214104,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance Risk Premium and VIX Pricing: A Simple GARCH Approach\",\"authors\":\"Qiang Liu, Gaoxiu Qiao, Shuxin Guo\",\"doi\":\"10.2139/ssrn.2155993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper assesses variance risk premium and forecasts out-of-sample VIX under GARCH(1,1), GJR, and Heston-Nandi models. With the date-t GARCH parameters estimated in a moving window fashion from 3,500 daily returns of the SP these risk-neutral parameters forecast the date-t VIX accurately with errors of not more than 0.2% on average.\",\"PeriodicalId\":214104,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2155993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2155993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variance Risk Premium and VIX Pricing: A Simple GARCH Approach
This paper assesses variance risk premium and forecasts out-of-sample VIX under GARCH(1,1), GJR, and Heston-Nandi models. With the date-t GARCH parameters estimated in a moving window fashion from 3,500 daily returns of the SP these risk-neutral parameters forecast the date-t VIX accurately with errors of not more than 0.2% on average.