Yun Qin, Zhenyu Wan, Yinan Sun, E. Skorina, Ming Luo, C. Onal
{"title":"三维软体机器蛇的设计、制造与实验分析","authors":"Yun Qin, Zhenyu Wan, Yinan Sun, E. Skorina, Ming Luo, C. Onal","doi":"10.1109/ROBOSOFT.2018.8404900","DOIUrl":null,"url":null,"abstract":"Snake robots are an emerging approach for navigating complicated and constrained environments. While existing snake robots rely on traditional articulated joints, we have been investigating the use of soft robotic modules which can allow for better compliance with the environment. In this article we present the first soft-material snake robot capable of non-planar locomotion. We performed experiments on the modules that make up the snake robot to determine the ideal material, settling on Ecoflex 0050. Combining 4 modules into the full soft snake, we performed locomotion experiments using both serpentine and sidewinding gaits. We determined that its maximum speed under serpentine locomotion was 131.6 mm/s (0.25 body lengths per second) while under sidewinding it was 65.2 mm/s (0.12 body lengths per second). Finally, we tested these gaits on other surfaces and found that the sidewinding could move more reliably on different surfaces.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Design, fabrication and experimental analysis of a 3-D soft robotic snake\",\"authors\":\"Yun Qin, Zhenyu Wan, Yinan Sun, E. Skorina, Ming Luo, C. Onal\",\"doi\":\"10.1109/ROBOSOFT.2018.8404900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snake robots are an emerging approach for navigating complicated and constrained environments. While existing snake robots rely on traditional articulated joints, we have been investigating the use of soft robotic modules which can allow for better compliance with the environment. In this article we present the first soft-material snake robot capable of non-planar locomotion. We performed experiments on the modules that make up the snake robot to determine the ideal material, settling on Ecoflex 0050. Combining 4 modules into the full soft snake, we performed locomotion experiments using both serpentine and sidewinding gaits. We determined that its maximum speed under serpentine locomotion was 131.6 mm/s (0.25 body lengths per second) while under sidewinding it was 65.2 mm/s (0.12 body lengths per second). Finally, we tested these gaits on other surfaces and found that the sidewinding could move more reliably on different surfaces.\",\"PeriodicalId\":306255,\"journal\":{\"name\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOSOFT.2018.8404900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, fabrication and experimental analysis of a 3-D soft robotic snake
Snake robots are an emerging approach for navigating complicated and constrained environments. While existing snake robots rely on traditional articulated joints, we have been investigating the use of soft robotic modules which can allow for better compliance with the environment. In this article we present the first soft-material snake robot capable of non-planar locomotion. We performed experiments on the modules that make up the snake robot to determine the ideal material, settling on Ecoflex 0050. Combining 4 modules into the full soft snake, we performed locomotion experiments using both serpentine and sidewinding gaits. We determined that its maximum speed under serpentine locomotion was 131.6 mm/s (0.25 body lengths per second) while under sidewinding it was 65.2 mm/s (0.12 body lengths per second). Finally, we tested these gaits on other surfaces and found that the sidewinding could move more reliably on different surfaces.