非结构化环境下基于逻辑回归的障碍物检测

C. Zhou, Huijun Di, Shaohang Xu, Chaoran Wang, Guang-ming Xiong, Jian-wei Gong
{"title":"非结构化环境下基于逻辑回归的障碍物检测","authors":"C. Zhou, Huijun Di, Shaohang Xu, Chaoran Wang, Guang-ming Xiong, Jian-wei Gong","doi":"10.1109/ICUS48101.2019.8995921","DOIUrl":null,"url":null,"abstract":"Obstacles in off-road environments can pose a greater risk to autonomous vehicles, so it is necessary to accurately detect obstacles. This paper proposes an obstacle detection method based on logistic regression. In order to extract the obstacle features better, we first project the discrete point cloud data into the two-dimensional depth map, and then we extract the height difference value and distance difference value between the pixels neighborhoods, after that we use the logistic regression to train and get the corresponding parameters. Combining the training parameters and the extracted effective features, we can obtain the passable probability in the depth map coordinates, and then back-project the depth map pixels into the two-dimensional grid map to obtain the final passable region result. We conduct a number of experiments and the results demonstrate the effectiveness of our method. Furthermore, our method meets the requirements of real-time applications and provides accurate environmental information for unmanned vehicle decision-making and planning.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle Detection Based on Logistic Regression in Unstructured Environment\",\"authors\":\"C. Zhou, Huijun Di, Shaohang Xu, Chaoran Wang, Guang-ming Xiong, Jian-wei Gong\",\"doi\":\"10.1109/ICUS48101.2019.8995921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacles in off-road environments can pose a greater risk to autonomous vehicles, so it is necessary to accurately detect obstacles. This paper proposes an obstacle detection method based on logistic regression. In order to extract the obstacle features better, we first project the discrete point cloud data into the two-dimensional depth map, and then we extract the height difference value and distance difference value between the pixels neighborhoods, after that we use the logistic regression to train and get the corresponding parameters. Combining the training parameters and the extracted effective features, we can obtain the passable probability in the depth map coordinates, and then back-project the depth map pixels into the two-dimensional grid map to obtain the final passable region result. We conduct a number of experiments and the results demonstrate the effectiveness of our method. Furthermore, our method meets the requirements of real-time applications and provides accurate environmental information for unmanned vehicle decision-making and planning.\",\"PeriodicalId\":344181,\"journal\":{\"name\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS48101.2019.8995921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8995921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越野环境中的障碍物会给自动驾驶汽车带来更大的风险,因此有必要准确地检测障碍物。提出了一种基于逻辑回归的障碍物检测方法。为了更好地提取障碍物特征,我们首先将离散点云数据投影到二维深度图中,然后提取像素邻域之间的高度差值和距离差值,然后使用逻辑回归进行训练,得到相应的参数。将训练参数与提取的有效特征相结合,得到深度图坐标中的可通过概率,然后将深度图像素反投影到二维网格图中,得到最终的可通过区域结果。我们进行了大量的实验,结果证明了我们方法的有效性。此外,我们的方法满足了实时应用的要求,为无人驾驶车辆的决策和规划提供了准确的环境信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obstacle Detection Based on Logistic Regression in Unstructured Environment
Obstacles in off-road environments can pose a greater risk to autonomous vehicles, so it is necessary to accurately detect obstacles. This paper proposes an obstacle detection method based on logistic regression. In order to extract the obstacle features better, we first project the discrete point cloud data into the two-dimensional depth map, and then we extract the height difference value and distance difference value between the pixels neighborhoods, after that we use the logistic regression to train and get the corresponding parameters. Combining the training parameters and the extracted effective features, we can obtain the passable probability in the depth map coordinates, and then back-project the depth map pixels into the two-dimensional grid map to obtain the final passable region result. We conduct a number of experiments and the results demonstrate the effectiveness of our method. Furthermore, our method meets the requirements of real-time applications and provides accurate environmental information for unmanned vehicle decision-making and planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信