圆形复相关高斯输入的∈-NLMS算法精确跟踪分析

M. Moinuddin, T. Al-Naffouri, M. S. Sohail
{"title":"圆形复相关高斯输入的∈-NLMS算法精确跟踪分析","authors":"M. Moinuddin, T. Al-Naffouri, M. S. Sohail","doi":"10.1109/ISSPIT.2010.5711782","DOIUrl":null,"url":null,"abstract":"This work presents exact tracking analysis of the ∈-normalized least mean square (∈-NLMS) algorithm for circular complex correlated Gaussian input. The analysis is based on the derivation of a closed form expression for the cumulative distribution function (CDF) of random variables of the form equations. The CDF is then used to derive the first and second moments of these variables. These moments in turn completely characterize the tracking performance of the ∈-NLMS algorithm in explicit closed form expressions. Consequently, new explicit closed-form expressions for the steady state tracking excess mean square error and optimum step size are derived. The simulation results of the tracking behavior of the filter match the expressions obtained theoretically for various degrees of input correlation and for various values of ∈.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exact Tracking Analysis of the ∈-NLMS algorithm for circular complex correlated Gaussian input\",\"authors\":\"M. Moinuddin, T. Al-Naffouri, M. S. Sohail\",\"doi\":\"10.1109/ISSPIT.2010.5711782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents exact tracking analysis of the ∈-normalized least mean square (∈-NLMS) algorithm for circular complex correlated Gaussian input. The analysis is based on the derivation of a closed form expression for the cumulative distribution function (CDF) of random variables of the form equations. The CDF is then used to derive the first and second moments of these variables. These moments in turn completely characterize the tracking performance of the ∈-NLMS algorithm in explicit closed form expressions. Consequently, new explicit closed-form expressions for the steady state tracking excess mean square error and optimum step size are derived. The simulation results of the tracking behavior of the filter match the expressions obtained theoretically for various degrees of input correlation and for various values of ∈.\",\"PeriodicalId\":308189,\"journal\":{\"name\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2010.5711782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出了对圆形复相关高斯输入的∈-归一化最小均方(∈-NLMS)算法的精确跟踪分析。分析的基础是推导了形式方程中随机变量的累积分布函数(CDF)的封闭形式表达式。然后使用CDF来推导这些变量的第一阶矩和第二阶矩。这些矩反过来又以显式的封闭形式表达式完全表征了∈-NLMS算法的跟踪性能。在此基础上,导出了新的稳态跟踪的显式封闭表达式,即超均方误差和最优步长。滤波器跟踪行为的仿真结果与理论得到的不同输入相关程度和∈的不同值的表达式相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Tracking Analysis of the ∈-NLMS algorithm for circular complex correlated Gaussian input
This work presents exact tracking analysis of the ∈-normalized least mean square (∈-NLMS) algorithm for circular complex correlated Gaussian input. The analysis is based on the derivation of a closed form expression for the cumulative distribution function (CDF) of random variables of the form equations. The CDF is then used to derive the first and second moments of these variables. These moments in turn completely characterize the tracking performance of the ∈-NLMS algorithm in explicit closed form expressions. Consequently, new explicit closed-form expressions for the steady state tracking excess mean square error and optimum step size are derived. The simulation results of the tracking behavior of the filter match the expressions obtained theoretically for various degrees of input correlation and for various values of ∈.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信