{"title":"自适应分辨率变化的多功能视频编码","authors":"Tsui-Shan Chang, Yu-Chen Sun, Ling Zhu, J.-G. Lou","doi":"10.1109/VCIP49819.2020.9301762","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive resolution change (ARC) method adopted in versatile video coding (VVC) to adapt the video bit-stream transmission to dynamic network environments. This approach enables resolution changes within a video sequence at any frame without the insertion of an instantaneous decoder refresh (IDR) or intra random access picture (IRAP). The underlying techniques include reference picture resampling and handling of interactions between the existing coding tools and the changes in resolution. In addition to the techniques adopted in VVC, this paper proposes two techniques for temporal motion vector prediction and deblocking filter to further improve both subjective and objective quality. The experimental results show that the combined ARC method can prevent the burden on bit cost exerted by the insertion of an intra frame during resolution changes. At the same time, 18%, 21% and 21% BD-rate reductions are achieved for Y, Cb, and Cr components, respectively.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Resolution Change for Versatile Video Coding\",\"authors\":\"Tsui-Shan Chang, Yu-Chen Sun, Ling Zhu, J.-G. Lou\",\"doi\":\"10.1109/VCIP49819.2020.9301762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive resolution change (ARC) method adopted in versatile video coding (VVC) to adapt the video bit-stream transmission to dynamic network environments. This approach enables resolution changes within a video sequence at any frame without the insertion of an instantaneous decoder refresh (IDR) or intra random access picture (IRAP). The underlying techniques include reference picture resampling and handling of interactions between the existing coding tools and the changes in resolution. In addition to the techniques adopted in VVC, this paper proposes two techniques for temporal motion vector prediction and deblocking filter to further improve both subjective and objective quality. The experimental results show that the combined ARC method can prevent the burden on bit cost exerted by the insertion of an intra frame during resolution changes. At the same time, 18%, 21% and 21% BD-rate reductions are achieved for Y, Cb, and Cr components, respectively.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Resolution Change for Versatile Video Coding
This paper presents an adaptive resolution change (ARC) method adopted in versatile video coding (VVC) to adapt the video bit-stream transmission to dynamic network environments. This approach enables resolution changes within a video sequence at any frame without the insertion of an instantaneous decoder refresh (IDR) or intra random access picture (IRAP). The underlying techniques include reference picture resampling and handling of interactions between the existing coding tools and the changes in resolution. In addition to the techniques adopted in VVC, this paper proposes two techniques for temporal motion vector prediction and deblocking filter to further improve both subjective and objective quality. The experimental results show that the combined ARC method can prevent the burden on bit cost exerted by the insertion of an intra frame during resolution changes. At the same time, 18%, 21% and 21% BD-rate reductions are achieved for Y, Cb, and Cr components, respectively.