利用错误发现——子群发现中模式和质量度量的统计验证

W. Duivesteijn, A. Knobbe
{"title":"利用错误发现——子群发现中模式和质量度量的统计验证","authors":"W. Duivesteijn, A. Knobbe","doi":"10.1109/ICDM.2011.65","DOIUrl":null,"url":null,"abstract":"Subgroup discovery suffers from the multiple comparisons problem: we search through a large space, hence whenever we report a set of discoveries, this set will generally contain false discoveries. We propose a method to compare subgroups found through subgroup discovery with a statistical model we build for these false discoveries. We determine how much the subgroups we find deviate from the model, and hence statistically validate the found subgroups. Furthermore we propose to use this subgroup validation to objectively compare quality measures used in subgroup discovery, by determining how much the top subgroups we find with each measure deviate from the statistical model generated with that measure. We thus aim to determine how good individual measures are in selecting significant findings. We invoke our method to experimentally compare popular quality measures in several subgroup discovery settings.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Exploiting False Discoveries -- Statistical Validation of Patterns and Quality Measures in Subgroup Discovery\",\"authors\":\"W. Duivesteijn, A. Knobbe\",\"doi\":\"10.1109/ICDM.2011.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subgroup discovery suffers from the multiple comparisons problem: we search through a large space, hence whenever we report a set of discoveries, this set will generally contain false discoveries. We propose a method to compare subgroups found through subgroup discovery with a statistical model we build for these false discoveries. We determine how much the subgroups we find deviate from the model, and hence statistically validate the found subgroups. Furthermore we propose to use this subgroup validation to objectively compare quality measures used in subgroup discovery, by determining how much the top subgroups we find with each measure deviate from the statistical model generated with that measure. We thus aim to determine how good individual measures are in selecting significant findings. We invoke our method to experimentally compare popular quality measures in several subgroup discovery settings.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

子群发现存在多重比较问题:我们在一个很大的空间中搜索,因此每当我们报告一组发现时,这组发现通常会包含错误的发现。我们提出了一种方法,将通过子群发现发现的子群与我们为这些错误发现建立的统计模型进行比较。我们确定我们发现的子组偏离模型的程度,从而在统计上验证发现的子组。此外,我们建议使用这个子组验证来客观地比较子组发现中使用的质量度量,通过确定我们在每个度量中发现的顶级子组偏离由该度量生成的统计模型的程度。因此,我们的目标是确定单个测量方法在选择重要发现方面有多好。我们调用我们的方法来实验比较流行的质量措施在几个亚组发现设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting False Discoveries -- Statistical Validation of Patterns and Quality Measures in Subgroup Discovery
Subgroup discovery suffers from the multiple comparisons problem: we search through a large space, hence whenever we report a set of discoveries, this set will generally contain false discoveries. We propose a method to compare subgroups found through subgroup discovery with a statistical model we build for these false discoveries. We determine how much the subgroups we find deviate from the model, and hence statistically validate the found subgroups. Furthermore we propose to use this subgroup validation to objectively compare quality measures used in subgroup discovery, by determining how much the top subgroups we find with each measure deviate from the statistical model generated with that measure. We thus aim to determine how good individual measures are in selecting significant findings. We invoke our method to experimentally compare popular quality measures in several subgroup discovery settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信