手指手势早期识别与RGB或深度相机统一框架

S. Manitsaris, A. Tsagaris, A. Glushkova, F. Moutarde, Frédéric Bevilacqua
{"title":"手指手势早期识别与RGB或深度相机统一框架","authors":"S. Manitsaris, A. Tsagaris, A. Glushkova, F. Moutarde, Frédéric Bevilacqua","doi":"10.1145/2948910.2948947","DOIUrl":null,"url":null,"abstract":"This paper presents a unified framework computer vision approach for finger gesture early recognition and interaction that can be applied on sequences of either RGB or depth images without any supervised skeleton extraction. Either RGB or time-of-flight cameras can be used to capture finger motions. The hand detection is based on a skin color model for color images or distance slicing for depth images. A unique hand model is used for the finger detection and identification. Static (fingerings) and dynamic (sequence and/or combination of fingerings) patterns can be early-recognized based on one-shot learning approach using a modified Hidden Markov Models approach. The recognition accuracy is evaluated in two different applications: musical and robotic interaction. In the first case standardized basic piano-like finger gestures (ascending/descending scales, ascending/descending arpeggio) are used to evaluate the performance of the system. In the second case, both standardized and user-defined gestures (driving, waypoints etc.) are recognized and used to interactively control an automated guided vehicle.","PeriodicalId":381334,"journal":{"name":"Proceedings of the 3rd International Symposium on Movement and Computing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fingers gestures early-recognition with a unified framework for RGB or depth camera\",\"authors\":\"S. Manitsaris, A. Tsagaris, A. Glushkova, F. Moutarde, Frédéric Bevilacqua\",\"doi\":\"10.1145/2948910.2948947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unified framework computer vision approach for finger gesture early recognition and interaction that can be applied on sequences of either RGB or depth images without any supervised skeleton extraction. Either RGB or time-of-flight cameras can be used to capture finger motions. The hand detection is based on a skin color model for color images or distance slicing for depth images. A unique hand model is used for the finger detection and identification. Static (fingerings) and dynamic (sequence and/or combination of fingerings) patterns can be early-recognized based on one-shot learning approach using a modified Hidden Markov Models approach. The recognition accuracy is evaluated in two different applications: musical and robotic interaction. In the first case standardized basic piano-like finger gestures (ascending/descending scales, ascending/descending arpeggio) are used to evaluate the performance of the system. In the second case, both standardized and user-defined gestures (driving, waypoints etc.) are recognized and used to interactively control an automated guided vehicle.\",\"PeriodicalId\":381334,\"journal\":{\"name\":\"Proceedings of the 3rd International Symposium on Movement and Computing\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Symposium on Movement and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2948910.2948947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Symposium on Movement and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948910.2948947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种统一框架的手指手势早期识别和交互计算机视觉方法,该方法可以应用于RGB或深度图像序列,而无需任何监督骨架提取。RGB或飞行时间相机都可以用来捕捉手指的动作。手的检测是基于肤色模型的彩色图像或距离切片的深度图像。使用独特的手部模型进行手指检测和识别。静态(指法)和动态(指法序列和/或组合)模式可以基于使用改进的隐马尔可夫模型方法的一次性学习方法进行早期识别。在两种不同的应用中评估了识别精度:音乐和机器人交互。在第一种情况下,标准化的类似钢琴的基本手指手势(升/降音阶,升/降琶音)被用来评估系统的性能。在第二种情况下,标准化和用户定义的手势(驾驶,路点等)都被识别并用于交互式控制自动引导车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingers gestures early-recognition with a unified framework for RGB or depth camera
This paper presents a unified framework computer vision approach for finger gesture early recognition and interaction that can be applied on sequences of either RGB or depth images without any supervised skeleton extraction. Either RGB or time-of-flight cameras can be used to capture finger motions. The hand detection is based on a skin color model for color images or distance slicing for depth images. A unique hand model is used for the finger detection and identification. Static (fingerings) and dynamic (sequence and/or combination of fingerings) patterns can be early-recognized based on one-shot learning approach using a modified Hidden Markov Models approach. The recognition accuracy is evaluated in two different applications: musical and robotic interaction. In the first case standardized basic piano-like finger gestures (ascending/descending scales, ascending/descending arpeggio) are used to evaluate the performance of the system. In the second case, both standardized and user-defined gestures (driving, waypoints etc.) are recognized and used to interactively control an automated guided vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信