Abdelrahman H. Hefny, Georgios A. Dafoulas, Manal A. Ismail
{"title":"管理会话助手的意图分类","authors":"Abdelrahman H. Hefny, Georgios A. Dafoulas, Manal A. Ismail","doi":"10.1109/ICCES51560.2020.9334685","DOIUrl":null,"url":null,"abstract":"Intent classification is an essential step in processing user input to a conversational assistant. This work investigates techniques of intent classification of chat messages used for communication among software development teams with the aim of building an intent classifier for a management conversational assistant integrated into modern communication platforms used by developers. Experiments conducted using rule-based and common ML techniques have shown that careful choice of classification features has a significant impact on performance, and the best performing model was able to obtain a classification accuracy of 72%. A set of techniques for extracting useful features for text classification in the software engineering domain was also implemented and tested.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intent Classification for a Management Conversational Assistant\",\"authors\":\"Abdelrahman H. Hefny, Georgios A. Dafoulas, Manal A. Ismail\",\"doi\":\"10.1109/ICCES51560.2020.9334685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intent classification is an essential step in processing user input to a conversational assistant. This work investigates techniques of intent classification of chat messages used for communication among software development teams with the aim of building an intent classifier for a management conversational assistant integrated into modern communication platforms used by developers. Experiments conducted using rule-based and common ML techniques have shown that careful choice of classification features has a significant impact on performance, and the best performing model was able to obtain a classification accuracy of 72%. A set of techniques for extracting useful features for text classification in the software engineering domain was also implemented and tested.\",\"PeriodicalId\":247183,\"journal\":{\"name\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES51560.2020.9334685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intent Classification for a Management Conversational Assistant
Intent classification is an essential step in processing user input to a conversational assistant. This work investigates techniques of intent classification of chat messages used for communication among software development teams with the aim of building an intent classifier for a management conversational assistant integrated into modern communication platforms used by developers. Experiments conducted using rule-based and common ML techniques have shown that careful choice of classification features has a significant impact on performance, and the best performing model was able to obtain a classification accuracy of 72%. A set of techniques for extracting useful features for text classification in the software engineering domain was also implemented and tested.