基于到达时间约束的时钟树构造

Rickard Ewetz, Cheng-Kok Koh
{"title":"基于到达时间约束的时钟树构造","authors":"Rickard Ewetz, Cheng-Kok Koh","doi":"10.1145/3036669.3036671","DOIUrl":null,"url":null,"abstract":"There are striking differences between constructing clock trees based on dynamic implied skew constraints and based on static arrival time constraints. Dynamic implied skew constraints allow the full timing margins to be utilized, but the constraints are required to be updated (with high time complexity). In contrast, static arrival time constraints are decoupled and are not required to be updated. Therefore, the constraints can be obtained in constant time, which facilitates the exploration of various tree topologies. On the other hand, arrival time constraints do not allow the full timing margins to be utilized. Consequently, there is a trade-off between topology exploration and timing margin utilization. In this paper, the advantages of static arrival time constraints are leveraged to construct clock trees with useful skew while exploring various tree topologies. Moreover, the constraints are specified and respecified throughout the synthesis process reduce the cost of the constructed clock trees. It is experimentally demonstrated that the proposed approach results in clock trees with 16% lower average capacitive cost compared with clock trees constructed based on dynamic implied skew constraints.","PeriodicalId":269197,"journal":{"name":"Proceedings of the 2017 ACM on International Symposium on Physical Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clock Tree Construction based on Arrival Time Constraints\",\"authors\":\"Rickard Ewetz, Cheng-Kok Koh\",\"doi\":\"10.1145/3036669.3036671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are striking differences between constructing clock trees based on dynamic implied skew constraints and based on static arrival time constraints. Dynamic implied skew constraints allow the full timing margins to be utilized, but the constraints are required to be updated (with high time complexity). In contrast, static arrival time constraints are decoupled and are not required to be updated. Therefore, the constraints can be obtained in constant time, which facilitates the exploration of various tree topologies. On the other hand, arrival time constraints do not allow the full timing margins to be utilized. Consequently, there is a trade-off between topology exploration and timing margin utilization. In this paper, the advantages of static arrival time constraints are leveraged to construct clock trees with useful skew while exploring various tree topologies. Moreover, the constraints are specified and respecified throughout the synthesis process reduce the cost of the constructed clock trees. It is experimentally demonstrated that the proposed approach results in clock trees with 16% lower average capacitive cost compared with clock trees constructed based on dynamic implied skew constraints.\",\"PeriodicalId\":269197,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Symposium on Physical Design\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3036669.3036671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3036669.3036671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于动态隐含偏差约束和基于静态到达时间约束的时钟树构造存在显著差异。动态隐含的倾斜约束允许充分利用时间余量,但需要更新约束(具有高时间复杂性)。相反,静态到达时间约束是解耦的,不需要更新。因此,约束条件可以在恒定时间内得到,便于探索各种树的拓扑结构。另一方面,到达时间限制不允许充分利用时间余量。因此,在拓扑探索和时间裕度利用之间存在一种权衡。在本文中,利用静态到达时间约束的优势来构建具有有用偏差的时钟树,同时探索各种树拓扑。此外,在整个合成过程中指定和重新指定约束,减少了构造时钟树的成本。实验表明,与基于动态隐含偏差约束的时钟树相比,该方法的时钟树的平均电容成本降低了16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clock Tree Construction based on Arrival Time Constraints
There are striking differences between constructing clock trees based on dynamic implied skew constraints and based on static arrival time constraints. Dynamic implied skew constraints allow the full timing margins to be utilized, but the constraints are required to be updated (with high time complexity). In contrast, static arrival time constraints are decoupled and are not required to be updated. Therefore, the constraints can be obtained in constant time, which facilitates the exploration of various tree topologies. On the other hand, arrival time constraints do not allow the full timing margins to be utilized. Consequently, there is a trade-off between topology exploration and timing margin utilization. In this paper, the advantages of static arrival time constraints are leveraged to construct clock trees with useful skew while exploring various tree topologies. Moreover, the constraints are specified and respecified throughout the synthesis process reduce the cost of the constructed clock trees. It is experimentally demonstrated that the proposed approach results in clock trees with 16% lower average capacitive cost compared with clock trees constructed based on dynamic implied skew constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信