MRF线过程模型的参数估计

S. Nadabar, Anil K. Jain
{"title":"MRF线过程模型的参数估计","authors":"S. Nadabar, Anil K. Jain","doi":"10.1109/CVPR.1992.223140","DOIUrl":null,"url":null,"abstract":"A scheme for the estimation of the Markov random field (MRF) line process parameters that uses geometric CAD models of the objects in the scene is presented. The models are used to generate synthetic images of the objects from random viewpoints. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. It is shown that this parameter estimation method is useful for detecting edges in range as well as intensity images.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Parameter estimation in MRF line process models\",\"authors\":\"S. Nadabar, Anil K. Jain\",\"doi\":\"10.1109/CVPR.1992.223140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scheme for the estimation of the Markov random field (MRF) line process parameters that uses geometric CAD models of the objects in the scene is presented. The models are used to generate synthetic images of the objects from random viewpoints. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. It is shown that this parameter estimation method is useful for detecting edges in range as well as intensity images.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种利用场景中物体的几何CAD模型估计马尔可夫随机场(MRF)线过程参数的方案。这些模型用于从随机视点生成物体的合成图像。将合成图像计算得到的边缘映射作为训练样本,利用最小二乘法估计直线过程参数。结果表明,该参数估计方法可用于距离图像和强度图像的边缘检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation in MRF line process models
A scheme for the estimation of the Markov random field (MRF) line process parameters that uses geometric CAD models of the objects in the scene is presented. The models are used to generate synthetic images of the objects from random viewpoints. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. It is shown that this parameter estimation method is useful for detecting edges in range as well as intensity images.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信