低于剥离阈值的随机游走布谷鸟哈希插入时间

Stefan Walzer
{"title":"低于剥离阈值的随机游走布谷鸟哈希插入时间","authors":"Stefan Walzer","doi":"10.4230/LIPIcs.ESA.2022.87","DOIUrl":null,"url":null,"abstract":"Most hash tables have an insertion time of $O(1)$, possibly qualified as expected and/or amortised. While insertions into cuckoo hash tables indeed seem to take $O(1)$ expected time in practice, only polylogarithmic guarantees are proven in all but the simplest of practically relevant cases. Given the widespread use of cuckoo hashing to implement compact dictionaries and Bloom filter alternatives, closing this gap is an important open problem for theoreticians. In this paper, we show that random walk insertions into cuckoo hash tables take $O(1)$ expected amortised time when any number $k \\geq 3$ of hash functions is used and the load factor is below the corresponding peeling threshold (e.g. $\\approx 0.81$ for $k = 3$). To our knowledge, this is the first meaningful guarantee for constant time insertion for cuckoo hashing that works for $k \\in \\{3,\\dots,9\\}$. In addition to being useful in its own right, we hope that our key-centred analysis method can be a stepping stone on the path to the true end goal: $O(1)$ time insertions for all load factors below the load threshold (e.g. $\\approx 0.91$ for $k = 3$).","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Insertion Time of Random Walk Cuckoo Hashing below the Peeling Threshold\",\"authors\":\"Stefan Walzer\",\"doi\":\"10.4230/LIPIcs.ESA.2022.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most hash tables have an insertion time of $O(1)$, possibly qualified as expected and/or amortised. While insertions into cuckoo hash tables indeed seem to take $O(1)$ expected time in practice, only polylogarithmic guarantees are proven in all but the simplest of practically relevant cases. Given the widespread use of cuckoo hashing to implement compact dictionaries and Bloom filter alternatives, closing this gap is an important open problem for theoreticians. In this paper, we show that random walk insertions into cuckoo hash tables take $O(1)$ expected amortised time when any number $k \\\\geq 3$ of hash functions is used and the load factor is below the corresponding peeling threshold (e.g. $\\\\approx 0.81$ for $k = 3$). To our knowledge, this is the first meaningful guarantee for constant time insertion for cuckoo hashing that works for $k \\\\in \\\\{3,\\\\dots,9\\\\}$. In addition to being useful in its own right, we hope that our key-centred analysis method can be a stepping stone on the path to the true end goal: $O(1)$ time insertions for all load factors below the load threshold (e.g. $\\\\approx 0.91$ for $k = 3$).\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ESA.2022.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2022.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大多数哈希表的插入时间为$O(1)$,可能符合预期和/或平摊。虽然在实践中插入到布谷鸟哈希表似乎确实需要$O(1)$预期时间,但除了最简单的实际相关情况外,只有多对数保证在所有情况下都得到了证明。鉴于布谷鸟哈希被广泛用于实现紧凑字典和布隆过滤器替代品,缩小这一差距对理论家来说是一个重要的开放问题。在本文中,我们表明,当使用任意数量的$k \geq 3$个哈希函数并且负载因子低于相应的剥离阈值(例如$k = 3$的$\approx 0.81$)时,随机行走插入到布谷鸟哈希表中的预期摊销时间为$O(1)$。据我们所知,这是对用于$k \in \{3,\dots,9\}$的布谷鸟散列的常数时间插入的第一个有意义的保证。除了本身有用之外,我们希望我们的以键为中心的分析方法可以成为通往真正最终目标的道路上的踏脚石:$O(1)$低于负载阈值的所有负载因子的时间插入(例如$k = 3$的$\approx 0.91$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insertion Time of Random Walk Cuckoo Hashing below the Peeling Threshold
Most hash tables have an insertion time of $O(1)$, possibly qualified as expected and/or amortised. While insertions into cuckoo hash tables indeed seem to take $O(1)$ expected time in practice, only polylogarithmic guarantees are proven in all but the simplest of practically relevant cases. Given the widespread use of cuckoo hashing to implement compact dictionaries and Bloom filter alternatives, closing this gap is an important open problem for theoreticians. In this paper, we show that random walk insertions into cuckoo hash tables take $O(1)$ expected amortised time when any number $k \geq 3$ of hash functions is used and the load factor is below the corresponding peeling threshold (e.g. $\approx 0.81$ for $k = 3$). To our knowledge, this is the first meaningful guarantee for constant time insertion for cuckoo hashing that works for $k \in \{3,\dots,9\}$. In addition to being useful in its own right, we hope that our key-centred analysis method can be a stepping stone on the path to the true end goal: $O(1)$ time insertions for all load factors below the load threshold (e.g. $\approx 0.91$ for $k = 3$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信