基于伪测量的多传感器系统分布式融合估计

Jin Xue-bo, Du Jing-jing, Wang Lei-lei
{"title":"基于伪测量的多传感器系统分布式融合估计","authors":"Jin Xue-bo, Du Jing-jing, Wang Lei-lei","doi":"10.1109/CINC.2009.95","DOIUrl":null,"url":null,"abstract":"By considering the relation between local fusion estimation and fusion center, in this paper the estimation from local fusion nodes is regarded as a pseudo-measurement. Then the distributed estimation algorithm is turned to be two-level centralized fusion estimation and the new optimal distributed fusion estimation algorithm is obtained with Kalman filtering form, which in general only centralized estimation method has. Simulations show the developed algorithm has the excellent estimation performance. By the developed algorithm, the distributed multisensor system can be unified with centralized system and make it possible that applying the abundant research result of centralized system to distributed multisensor system.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Fusion Estimation Based on Pseudo-measurement for Multi-sensor System\",\"authors\":\"Jin Xue-bo, Du Jing-jing, Wang Lei-lei\",\"doi\":\"10.1109/CINC.2009.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By considering the relation between local fusion estimation and fusion center, in this paper the estimation from local fusion nodes is regarded as a pseudo-measurement. Then the distributed estimation algorithm is turned to be two-level centralized fusion estimation and the new optimal distributed fusion estimation algorithm is obtained with Kalman filtering form, which in general only centralized estimation method has. Simulations show the developed algorithm has the excellent estimation performance. By the developed algorithm, the distributed multisensor system can be unified with centralized system and make it possible that applying the abundant research result of centralized system to distributed multisensor system.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到局部融合估计与融合中心之间的关系,本文将局部融合节点的估计视为伪测量。然后将分布式估计算法转化为两级集中式融合估计,并采用卡尔曼滤波的形式得到了通常只有集中式估计方法才具有的新的最优分布式融合估计算法。仿真结果表明,该算法具有良好的估计性能。通过所开发的算法,可以将分布式多传感器系统与集中式系统统一起来,使集中式系统的丰富研究成果应用于分布式多传感器系统成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Fusion Estimation Based on Pseudo-measurement for Multi-sensor System
By considering the relation between local fusion estimation and fusion center, in this paper the estimation from local fusion nodes is regarded as a pseudo-measurement. Then the distributed estimation algorithm is turned to be two-level centralized fusion estimation and the new optimal distributed fusion estimation algorithm is obtained with Kalman filtering form, which in general only centralized estimation method has. Simulations show the developed algorithm has the excellent estimation performance. By the developed algorithm, the distributed multisensor system can be unified with centralized system and make it possible that applying the abundant research result of centralized system to distributed multisensor system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信