铁晶界的人工神经网络分子力学

Y. Shiihara, Ryosuke Kanazawa, D. Matsunaka, I. Lobzenko, T. Tsuru, M. Kohyama, H. Mori
{"title":"铁晶界的人工神经网络分子力学","authors":"Y. Shiihara, Ryosuke Kanazawa, D. Matsunaka, I. Lobzenko, T. Tsuru, M. Kohyama, H. Mori","doi":"10.2139/ssrn.3881303","DOIUrl":null,"url":null,"abstract":"This study reports grain boundary (GB) energy calculations for 46 symmetric-tilt GBs in α-iron using molecular mechanics based on an artificial neural network (ANN) potential and compares the results with calculations based on the density functional theory (DFT), the embedded atom method (EAM), and the modified EAM (MEAM). The results by the ANN potential are in excellent agreement with those of the DFT (5 % on average), while the EAM and MEAM significantly differ from the DFT results (about 27 % on average). In a uniaxial tensile calculation of Σ3(1‾12) GB, the ANN potential reproduced the brittle fracture tendency of the GB observed in the DFT while the EAM and MEAM showed mistakenly showed ductile behaviors. These results demonstrate the effectiveness of the ANN potential in grain boundary calculations of iron as a fast and accurate simulation highly in demand in the modern industrial world.","PeriodicalId":438337,"journal":{"name":"EngRN: Metals & Alloys (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Artificial Neural Network Molecular Mechanics of Iron Grain Boundaries\",\"authors\":\"Y. Shiihara, Ryosuke Kanazawa, D. Matsunaka, I. Lobzenko, T. Tsuru, M. Kohyama, H. Mori\",\"doi\":\"10.2139/ssrn.3881303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports grain boundary (GB) energy calculations for 46 symmetric-tilt GBs in α-iron using molecular mechanics based on an artificial neural network (ANN) potential and compares the results with calculations based on the density functional theory (DFT), the embedded atom method (EAM), and the modified EAM (MEAM). The results by the ANN potential are in excellent agreement with those of the DFT (5 % on average), while the EAM and MEAM significantly differ from the DFT results (about 27 % on average). In a uniaxial tensile calculation of Σ3(1‾12) GB, the ANN potential reproduced the brittle fracture tendency of the GB observed in the DFT while the EAM and MEAM showed mistakenly showed ductile behaviors. These results demonstrate the effectiveness of the ANN potential in grain boundary calculations of iron as a fast and accurate simulation highly in demand in the modern industrial world.\",\"PeriodicalId\":438337,\"journal\":{\"name\":\"EngRN: Metals & Alloys (Topic)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Metals & Alloys (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3881303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Metals & Alloys (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3881303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文报道了基于人工神经网络(ANN)势的分子力学计算α-铁中46个对称倾斜晶界(GB)能,并将计算结果与基于密度泛函理论(DFT)、嵌入原子法(EAM)和改进的EAM (MEAM)计算结果进行了比较。神经网络电位的结果与DFT的结果非常吻合(平均为5%),而EAM和MEAM的结果与DFT的结果有显著差异(平均约为27%)。在Σ3(1 - 12) GB的单轴拉伸计算中,ANN电位再现了DFT中观察到的GB的脆性断裂倾向,而EAM和MEAM则表现出错误的延性行为。这些结果证明了人工神经网络势在铁晶界计算中的有效性,作为一种快速准确的模拟方法在现代工业世界中是非常需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Molecular Mechanics of Iron Grain Boundaries
This study reports grain boundary (GB) energy calculations for 46 symmetric-tilt GBs in α-iron using molecular mechanics based on an artificial neural network (ANN) potential and compares the results with calculations based on the density functional theory (DFT), the embedded atom method (EAM), and the modified EAM (MEAM). The results by the ANN potential are in excellent agreement with those of the DFT (5 % on average), while the EAM and MEAM significantly differ from the DFT results (about 27 % on average). In a uniaxial tensile calculation of Σ3(1‾12) GB, the ANN potential reproduced the brittle fracture tendency of the GB observed in the DFT while the EAM and MEAM showed mistakenly showed ductile behaviors. These results demonstrate the effectiveness of the ANN potential in grain boundary calculations of iron as a fast and accurate simulation highly in demand in the modern industrial world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信