Xinlong Wen, Xin Song, Zhi Zheng, Bo Wang, Yongxin Guo
{"title":"基于wi - fi的跌倒检测多类数据集扩展方法","authors":"Xinlong Wen, Xin Song, Zhi Zheng, Bo Wang, Yongxin Guo","doi":"10.1109/IMBioC52515.2022.9790259","DOIUrl":null,"url":null,"abstract":"Nowadays, with the wide commercial use of Wi-Fi technology, the use of Wi-Fi channel state information (CSI) for fall detection has gradually become a hot research field. However, many existing fall detection systems based on Wi-Fi lack accurate action classification because of the high acquisition cost of complex action datasets. They cannot accurately identify complex fall actions, and have a high false positive rate. This paper proposes a multi-class dataset expansion method for different fall actions and non-fall actions, which classifies the movements in detail according to fall speed and other limb movements and expands the scale of the data set by dividing and reorganizing the limited data. As a result, the proposed method reaches a recognition accuracy of 91.6%.","PeriodicalId":305829,"journal":{"name":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-class Dataset Expansion Method for Wi-Fi-Based Fall Detection\",\"authors\":\"Xinlong Wen, Xin Song, Zhi Zheng, Bo Wang, Yongxin Guo\",\"doi\":\"10.1109/IMBioC52515.2022.9790259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, with the wide commercial use of Wi-Fi technology, the use of Wi-Fi channel state information (CSI) for fall detection has gradually become a hot research field. However, many existing fall detection systems based on Wi-Fi lack accurate action classification because of the high acquisition cost of complex action datasets. They cannot accurately identify complex fall actions, and have a high false positive rate. This paper proposes a multi-class dataset expansion method for different fall actions and non-fall actions, which classifies the movements in detail according to fall speed and other limb movements and expands the scale of the data set by dividing and reorganizing the limited data. As a result, the proposed method reaches a recognition accuracy of 91.6%.\",\"PeriodicalId\":305829,\"journal\":{\"name\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBioC52515.2022.9790259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBioC52515.2022.9790259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-class Dataset Expansion Method for Wi-Fi-Based Fall Detection
Nowadays, with the wide commercial use of Wi-Fi technology, the use of Wi-Fi channel state information (CSI) for fall detection has gradually become a hot research field. However, many existing fall detection systems based on Wi-Fi lack accurate action classification because of the high acquisition cost of complex action datasets. They cannot accurately identify complex fall actions, and have a high false positive rate. This paper proposes a multi-class dataset expansion method for different fall actions and non-fall actions, which classifies the movements in detail according to fall speed and other limb movements and expands the scale of the data set by dividing and reorganizing the limited data. As a result, the proposed method reaches a recognition accuracy of 91.6%.