自动运动分割使用随机行走

Idir Boulfrifi, K. Housni, A. Mouloudi
{"title":"自动运动分割使用随机行走","authors":"Idir Boulfrifi, K. Housni, A. Mouloudi","doi":"10.1145/3128128.3128139","DOIUrl":null,"url":null,"abstract":"This paper presents a method two segment moving objects from video sequences by combining spatial and temporal information. The segmentation is performed in two steps : automatic seeds detection, and random walk segmentation. In the first step, seeds are detected by using optical flow in specific pixels so in every d × d grid there is one pixel to represent the grid, then initial seeds are chosen automatically by thresholding the distance of estimated motion vector of the sparse pixels. In the second step, we treat our motion segmentation as a graph based problem, then an energy function is defined to evaluate spatial and temporal smoothness, and we apply random walk algorithm to solve the energy minimization problem, the solution leads to affecting a label to every pixel in sequences video and get the final segmentation. The experimental results illustrate its promising performance and can be integrated in real-time application.","PeriodicalId":362403,"journal":{"name":"Proceedings of the 2017 International Conference on Smart Digital Environment","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic motion segmentation using random walks\",\"authors\":\"Idir Boulfrifi, K. Housni, A. Mouloudi\",\"doi\":\"10.1145/3128128.3128139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method two segment moving objects from video sequences by combining spatial and temporal information. The segmentation is performed in two steps : automatic seeds detection, and random walk segmentation. In the first step, seeds are detected by using optical flow in specific pixels so in every d × d grid there is one pixel to represent the grid, then initial seeds are chosen automatically by thresholding the distance of estimated motion vector of the sparse pixels. In the second step, we treat our motion segmentation as a graph based problem, then an energy function is defined to evaluate spatial and temporal smoothness, and we apply random walk algorithm to solve the energy minimization problem, the solution leads to affecting a label to every pixel in sequences video and get the final segmentation. The experimental results illustrate its promising performance and can be integrated in real-time application.\",\"PeriodicalId\":362403,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Smart Digital Environment\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Smart Digital Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3128128.3128139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Smart Digital Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128128.3128139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种结合时空信息对视频序列中的运动目标进行分割的方法。分割分为两步:自动种子检测和随机漫步分割。在第一步中,利用光流在特定像素点检测种子,每个d × d网格中有一个像素点代表该网格,然后通过对稀疏像素点估计的运动向量的距离进行阈值化自动选择初始种子。在第二步中,我们将运动分割作为一个基于图的问题,然后定义一个能量函数来评估空间和时间的平滑性,并应用随机漫步算法来解决能量最小化问题,该方法导致对序列视频中的每个像素都影响一个标签,从而得到最终的分割。实验结果表明,该方法具有良好的性能,可以集成到实时应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic motion segmentation using random walks
This paper presents a method two segment moving objects from video sequences by combining spatial and temporal information. The segmentation is performed in two steps : automatic seeds detection, and random walk segmentation. In the first step, seeds are detected by using optical flow in specific pixels so in every d × d grid there is one pixel to represent the grid, then initial seeds are chosen automatically by thresholding the distance of estimated motion vector of the sparse pixels. In the second step, we treat our motion segmentation as a graph based problem, then an energy function is defined to evaluate spatial and temporal smoothness, and we apply random walk algorithm to solve the energy minimization problem, the solution leads to affecting a label to every pixel in sequences video and get the final segmentation. The experimental results illustrate its promising performance and can be integrated in real-time application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信