基于欧氏距离函数的骨架化最大跟踪方法

F. Shih, C. C. Pu
{"title":"基于欧氏距离函数的骨架化最大跟踪方法","authors":"F. Shih, C. C. Pu","doi":"10.1109/TAI.1991.167101","DOIUrl":null,"url":null,"abstract":"A skeletonization algorithm based on the Euclidean distance function using the sequential maxima-tracking method is described which, when applied to a connected image, generates a connected skeleton composed of simple digital arcs. With a slight modification, the algorithm can preserve the more important features in the skeletal branches which touch the object boundary at corners. Therefore its application to shape recognition can be easily achieved.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A maxima-tracking method for skeletonization from Euclidean distance function\",\"authors\":\"F. Shih, C. C. Pu\",\"doi\":\"10.1109/TAI.1991.167101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A skeletonization algorithm based on the Euclidean distance function using the sequential maxima-tracking method is described which, when applied to a connected image, generates a connected skeleton composed of simple digital arcs. With a slight modification, the algorithm can preserve the more important features in the skeletal branches which touch the object boundary at corners. Therefore its application to shape recognition can be easily achieved.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于欧氏距离函数的序列极大值跟踪骨架化算法,该算法应用于连通图像,生成由简单数字弧线组成的连通骨架。该算法稍加修改,就能保留在角点处与目标边界接触的骨架分支中更重要的特征。因此很容易实现其在形状识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maxima-tracking method for skeletonization from Euclidean distance function
A skeletonization algorithm based on the Euclidean distance function using the sequential maxima-tracking method is described which, when applied to a connected image, generates a connected skeleton composed of simple digital arcs. With a slight modification, the algorithm can preserve the more important features in the skeletal branches which touch the object boundary at corners. Therefore its application to shape recognition can be easily achieved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信