{"title":"智能高分子胶束作为基因和药物传递的纳米载体","authors":"K. Kataoka","doi":"10.1109/ICMENS.2004.1508900","DOIUrl":null,"url":null,"abstract":"Block copolymers with amphiphilic character, having a large solubility difference between hydrophilic and hydrophobic segments, are known to assemble in an aqueous milieu into polymeric micelles with a mesoscopic size range. These micelles have a fairly narrow size distribution and are featured by their unique core-shell architecture, where hydrophobic segments are segregated from the aqueous exterior to form inner core surrounded by a palisade of hydrophilic segments. Recently, progressive interest has been raised in the application of these block copolymer micelles as novel carrier systems in the field of drug targeting because of the high drug-loading capacity of the inner core as well as of the unique disposition characteristics in the body [1,2].","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery\",\"authors\":\"K. Kataoka\",\"doi\":\"10.1109/ICMENS.2004.1508900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block copolymers with amphiphilic character, having a large solubility difference between hydrophilic and hydrophobic segments, are known to assemble in an aqueous milieu into polymeric micelles with a mesoscopic size range. These micelles have a fairly narrow size distribution and are featured by their unique core-shell architecture, where hydrophobic segments are segregated from the aqueous exterior to form inner core surrounded by a palisade of hydrophilic segments. Recently, progressive interest has been raised in the application of these block copolymer micelles as novel carrier systems in the field of drug targeting because of the high drug-loading capacity of the inner core as well as of the unique disposition characteristics in the body [1,2].\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.1508900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.1508900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery
Block copolymers with amphiphilic character, having a large solubility difference between hydrophilic and hydrophobic segments, are known to assemble in an aqueous milieu into polymeric micelles with a mesoscopic size range. These micelles have a fairly narrow size distribution and are featured by their unique core-shell architecture, where hydrophobic segments are segregated from the aqueous exterior to form inner core surrounded by a palisade of hydrophilic segments. Recently, progressive interest has been raised in the application of these block copolymer micelles as novel carrier systems in the field of drug targeting because of the high drug-loading capacity of the inner core as well as of the unique disposition characteristics in the body [1,2].