基于改进Siamese网络的SLAM闭环检测与验证

Mei Wang, Xiaofeng Zhang, Y. Ou, Zhe Chen
{"title":"基于改进Siamese网络的SLAM闭环检测与验证","authors":"Mei Wang, Xiaofeng Zhang, Y. Ou, Zhe Chen","doi":"10.1109/CISP-BMEI53629.2021.9624460","DOIUrl":null,"url":null,"abstract":"Visual Simultaneous Localization and Mapping (VSLAM) occupies a pivotal position in the robotics field. The loop closure detection module, which is related to the quality of mapping and the accuracy of positioning, is an indispensable part of SLAM. In recent years, neural networks are often used to replace the feature extraction part of loop closure detection. These methods can extract more helpful features, but the effect is not significant. In this paper, an improved siamese network is proposed to view the loop as a whole to improve the real-time performance of SLAM. Firstly, an improved 2D-siamese is proposed to obtain candidate key frames. In order to integrate feature extraction and similarity comparison, this 2D-siamese uses SE-Resnet network as its branch. Secondly, a 3D-siamese network, which verifies the continuity by using continuous images, is proposed for eliminate mismatches and improve loop closure detection accuracy. The experimental results on TUM and KITTI datasets show that the proposed method can greatly improve the accuracy and recall rate of the loop closure detection.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLAM Loop Closure Detection and Verification based on the Improved Siamese Network\",\"authors\":\"Mei Wang, Xiaofeng Zhang, Y. Ou, Zhe Chen\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Simultaneous Localization and Mapping (VSLAM) occupies a pivotal position in the robotics field. The loop closure detection module, which is related to the quality of mapping and the accuracy of positioning, is an indispensable part of SLAM. In recent years, neural networks are often used to replace the feature extraction part of loop closure detection. These methods can extract more helpful features, but the effect is not significant. In this paper, an improved siamese network is proposed to view the loop as a whole to improve the real-time performance of SLAM. Firstly, an improved 2D-siamese is proposed to obtain candidate key frames. In order to integrate feature extraction and similarity comparison, this 2D-siamese uses SE-Resnet network as its branch. Secondly, a 3D-siamese network, which verifies the continuity by using continuous images, is proposed for eliminate mismatches and improve loop closure detection accuracy. The experimental results on TUM and KITTI datasets show that the proposed method can greatly improve the accuracy and recall rate of the loop closure detection.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉同步定位与映射(VSLAM)在机器人领域占有举足轻重的地位。闭环检测模块是SLAM中不可缺少的组成部分,关系到测绘质量和定位精度。近年来,神经网络常被用来代替闭环检测的特征提取部分。这些方法可以提取更多的有用特征,但效果不显著。本文提出了一种改进的siamese网络,将环路视为一个整体,以提高SLAM的实时性。首先,提出一种改进的2D-siamese算法来获取候选关键帧;为了融合特征提取和相似度比较,该2D-siamese网络采用SE-Resnet网络作为分支。其次,提出了一种利用连续图像验证连续性的三维连体网络,以消除不匹配,提高闭环检测精度;在TUM和KITTI数据集上的实验结果表明,该方法可以大大提高闭环检测的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLAM Loop Closure Detection and Verification based on the Improved Siamese Network
Visual Simultaneous Localization and Mapping (VSLAM) occupies a pivotal position in the robotics field. The loop closure detection module, which is related to the quality of mapping and the accuracy of positioning, is an indispensable part of SLAM. In recent years, neural networks are often used to replace the feature extraction part of loop closure detection. These methods can extract more helpful features, but the effect is not significant. In this paper, an improved siamese network is proposed to view the loop as a whole to improve the real-time performance of SLAM. Firstly, an improved 2D-siamese is proposed to obtain candidate key frames. In order to integrate feature extraction and similarity comparison, this 2D-siamese uses SE-Resnet network as its branch. Secondly, a 3D-siamese network, which verifies the continuity by using continuous images, is proposed for eliminate mismatches and improve loop closure detection accuracy. The experimental results on TUM and KITTI datasets show that the proposed method can greatly improve the accuracy and recall rate of the loop closure detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信