{"title":"基于水平集的形状恢复新方法及其在稀疏视图形状层析成像中的应用","authors":"Haytham A. Ali, H. Kudo","doi":"10.1145/3506651.3506655","DOIUrl":null,"url":null,"abstract":"The recovery of shapes from a few numbers of their projections is very important in Computed tomography. In this paper, we propose a novel scheme based on a collocation set of Gaussian functions to represent any object by using a limited number of projections. This approach provides a continuous representation of both the implicit function and its zero level set. We show that the appropriate choice of a basis function to represent the parametric level-set leads to an optimization problem with a modest number of parameters, which exceeds many difficulties with traditional level set methods, such as regularization, re-initialization, and use of signed distance function. For the purposes of this paper, we used a dictionary of Gaussian function to provide flexibility in the representation of shapes with few terms as a basis function located at lattice points to parameterize the level set function. We propose a convex program to recover the dictionary coefficients successfully so it works stably with only four projections by overcoming the issue of local-minimum of the cost function. Finally, the performance of the proposed approach in three examples of inverse problems shows that our method compares favorably to Sparse Shape Composition (SSC), Total Variation, and Dual Problem.","PeriodicalId":280080,"journal":{"name":"2021 4th International Conference on Digital Medicine and Image Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New Level-Set-Based Shape Recovery Method and its application to sparse-view shape tomography\",\"authors\":\"Haytham A. Ali, H. Kudo\",\"doi\":\"10.1145/3506651.3506655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recovery of shapes from a few numbers of their projections is very important in Computed tomography. In this paper, we propose a novel scheme based on a collocation set of Gaussian functions to represent any object by using a limited number of projections. This approach provides a continuous representation of both the implicit function and its zero level set. We show that the appropriate choice of a basis function to represent the parametric level-set leads to an optimization problem with a modest number of parameters, which exceeds many difficulties with traditional level set methods, such as regularization, re-initialization, and use of signed distance function. For the purposes of this paper, we used a dictionary of Gaussian function to provide flexibility in the representation of shapes with few terms as a basis function located at lattice points to parameterize the level set function. We propose a convex program to recover the dictionary coefficients successfully so it works stably with only four projections by overcoming the issue of local-minimum of the cost function. Finally, the performance of the proposed approach in three examples of inverse problems shows that our method compares favorably to Sparse Shape Composition (SSC), Total Variation, and Dual Problem.\",\"PeriodicalId\":280080,\"journal\":{\"name\":\"2021 4th International Conference on Digital Medicine and Image Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Digital Medicine and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506651.3506655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Digital Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506651.3506655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Level-Set-Based Shape Recovery Method and its application to sparse-view shape tomography
The recovery of shapes from a few numbers of their projections is very important in Computed tomography. In this paper, we propose a novel scheme based on a collocation set of Gaussian functions to represent any object by using a limited number of projections. This approach provides a continuous representation of both the implicit function and its zero level set. We show that the appropriate choice of a basis function to represent the parametric level-set leads to an optimization problem with a modest number of parameters, which exceeds many difficulties with traditional level set methods, such as regularization, re-initialization, and use of signed distance function. For the purposes of this paper, we used a dictionary of Gaussian function to provide flexibility in the representation of shapes with few terms as a basis function located at lattice points to parameterize the level set function. We propose a convex program to recover the dictionary coefficients successfully so it works stably with only four projections by overcoming the issue of local-minimum of the cost function. Finally, the performance of the proposed approach in three examples of inverse problems shows that our method compares favorably to Sparse Shape Composition (SSC), Total Variation, and Dual Problem.