基于形状阴影的原位显微气泡分割

G. Martinez, J. Frerichs, T. Scheper
{"title":"基于形状阴影的原位显微气泡分割","authors":"G. Martinez, J. Frerichs, T. Scheper","doi":"10.1109/CONIELECOMP.2011.5749321","DOIUrl":null,"url":null,"abstract":"This paper describes a new bubble segmentation algorithm based on shape from shading for in-situ microscopy. An in-situ microscope is an instrument to capture and analyze intensity images of cells inside of a bioreactor with minimal operator intervention and without the risk of culture contamination. For bubble segmentation, the closed bubble boundaries are first extracted by thresholding a depth map. The depth map is estimated by applying the Bichsel and Pentland's Shape From Shading algorithm. Then, each extracted closed bubble boundary is filled in to obtained the bubble regions. The experimental results revealed an average processing time of 2.68 seconds and very promising bubble segmentation results.","PeriodicalId":432662,"journal":{"name":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bubble segmentation based on Shape From Shading for in-situ microscopy\",\"authors\":\"G. Martinez, J. Frerichs, T. Scheper\",\"doi\":\"10.1109/CONIELECOMP.2011.5749321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new bubble segmentation algorithm based on shape from shading for in-situ microscopy. An in-situ microscope is an instrument to capture and analyze intensity images of cells inside of a bioreactor with minimal operator intervention and without the risk of culture contamination. For bubble segmentation, the closed bubble boundaries are first extracted by thresholding a depth map. The depth map is estimated by applying the Bichsel and Pentland's Shape From Shading algorithm. Then, each extracted closed bubble boundary is filled in to obtained the bubble regions. The experimental results revealed an average processing time of 2.68 seconds and very promising bubble segmentation results.\",\"PeriodicalId\":432662,\"journal\":{\"name\":\"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIELECOMP.2011.5749321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2011.5749321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于形状阴影的原位显微气泡分割算法。原位显微镜是一种捕获和分析生物反应器内细胞强度图像的仪器,操作人员干预最少,没有培养污染的风险。对于气泡分割,首先通过深度图阈值提取封闭气泡边界。深度图是通过应用Bichsel和Pentland的形状从阴影算法估计。然后,对提取的每个封闭气泡边界进行填充,得到气泡区域。实验结果表明,平均处理时间为2.68秒,气泡分割效果非常理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubble segmentation based on Shape From Shading for in-situ microscopy
This paper describes a new bubble segmentation algorithm based on shape from shading for in-situ microscopy. An in-situ microscope is an instrument to capture and analyze intensity images of cells inside of a bioreactor with minimal operator intervention and without the risk of culture contamination. For bubble segmentation, the closed bubble boundaries are first extracted by thresholding a depth map. The depth map is estimated by applying the Bichsel and Pentland's Shape From Shading algorithm. Then, each extracted closed bubble boundary is filled in to obtained the bubble regions. The experimental results revealed an average processing time of 2.68 seconds and very promising bubble segmentation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信