一个大的低相关性的初始序列家族

Nigang Sun, Chang-lu Lin
{"title":"一个大的低相关性的初始序列家族","authors":"Nigang Sun, Chang-lu Lin","doi":"10.1109/IWSDA.2009.5346417","DOIUrl":null,"url":null,"abstract":"A large family of p-phase highest coordinate sequences, where p is an odd prime, is constructed by using the highest coordinate of the generalized Kerdock codes over the ring ℤpl, for l ≥ 3. Utilizing the local Weil bound and spectral analysis over the additive group of ℤpl, we derive an estimate of the correlation of the sequences. And the result shows that these sequences have low nontrivial autocorrelation and crosscorrelation, which makes it possible as code sequences in CDMA communication systems.","PeriodicalId":120760,"journal":{"name":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A large family of prime-phase sequences with low correlation\",\"authors\":\"Nigang Sun, Chang-lu Lin\",\"doi\":\"10.1109/IWSDA.2009.5346417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large family of p-phase highest coordinate sequences, where p is an odd prime, is constructed by using the highest coordinate of the generalized Kerdock codes over the ring ℤpl, for l ≥ 3. Utilizing the local Weil bound and spectral analysis over the additive group of ℤpl, we derive an estimate of the correlation of the sequences. And the result shows that these sequences have low nontrivial autocorrelation and crosscorrelation, which makes it possible as code sequences in CDMA communication systems.\",\"PeriodicalId\":120760,\"journal\":{\"name\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2009.5346417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2009.5346417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当l≥3时,利用环上广义Kerdock码的最高坐标构造了一大族p相最高坐标序列,其中p为奇素数。利用加性群上的局部Weil界和谱分析,我们得到了序列相关性的一个估计。结果表明,这些序列具有较低的非平凡自相关和互相关特性,可以作为码分多址(CDMA)通信系统的编码序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A large family of prime-phase sequences with low correlation
A large family of p-phase highest coordinate sequences, where p is an odd prime, is constructed by using the highest coordinate of the generalized Kerdock codes over the ring ℤpl, for l ≥ 3. Utilizing the local Weil bound and spectral analysis over the additive group of ℤpl, we derive an estimate of the correlation of the sequences. And the result shows that these sequences have low nontrivial autocorrelation and crosscorrelation, which makes it possible as code sequences in CDMA communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信