将偏最小二乘和前馈神经网络技术应用于静态安全评估问题的自动事件分组

D. Fischer, B. Szabados, S. Poehlman
{"title":"将偏最小二乘和前馈神经网络技术应用于静态安全评估问题的自动事件分组","authors":"D. Fischer, B. Szabados, S. Poehlman","doi":"10.1109/LESCPE.2003.1204684","DOIUrl":null,"url":null,"abstract":"The paper shows how a number of feed forward back propagation neural networks can be trained to predict power system bus voltages after a contingency. The approach is designed to use very few learning examples. thus being suitable for on-line use. The method was applied to the 10-machine, 39-bus New England Power System model.","PeriodicalId":226571,"journal":{"name":"Large Engineering Systems Conference on Power Engineering, 2003","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic contingency grouping using partial least squares and feed forward neural network technologies applied to the static security assessment problem\",\"authors\":\"D. Fischer, B. Szabados, S. Poehlman\",\"doi\":\"10.1109/LESCPE.2003.1204684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper shows how a number of feed forward back propagation neural networks can be trained to predict power system bus voltages after a contingency. The approach is designed to use very few learning examples. thus being suitable for on-line use. The method was applied to the 10-machine, 39-bus New England Power System model.\",\"PeriodicalId\":226571,\"journal\":{\"name\":\"Large Engineering Systems Conference on Power Engineering, 2003\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Large Engineering Systems Conference on Power Engineering, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LESCPE.2003.1204684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Large Engineering Systems Conference on Power Engineering, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LESCPE.2003.1204684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了如何训练多个前馈-反向传播神经网络来预测突发事件后的电力系统母线电压。该方法旨在使用很少的学习示例。因此适合在线使用。将该方法应用于10机39母线的新英格兰电力系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic contingency grouping using partial least squares and feed forward neural network technologies applied to the static security assessment problem
The paper shows how a number of feed forward back propagation neural networks can be trained to predict power system bus voltages after a contingency. The approach is designed to use very few learning examples. thus being suitable for on-line use. The method was applied to the 10-machine, 39-bus New England Power System model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信