Christos Zigkolis, S. Papadopoulos, Y. Kompatsiaris, A. Vakali
{"title":"标记图片集中兴趣点的长尾检测","authors":"Christos Zigkolis, S. Papadopoulos, Y. Kompatsiaris, A. Vakali","doi":"10.1109/CBMI.2011.5972551","DOIUrl":null,"url":null,"abstract":"The paper tackles the problem of matching the photos of a tagged photo collection to a list of “long-tail” Points Of Interest (PoIs), that is PoIs that are not very popular and thus not well represented in the photo collection. Despite the significance of improving “long-tail” PoI photo retrieval for travel applications, most landmark detection methods to date have been tested on very popular landmarks. In this paper, we conduct a thorough empirical analysis comparing four baseline matching methods that rely on photo metadata, three variants of an approach that uses cluster analysis in order to discover PoI-related photo clusters, and a real-world retrieval mechanism (Flickr search) on a set of less popular PoIs. A user-based evaluation of the aforementioned methods is conducted on a Flickr photo collection of over 100, 000 photos from 10 well-known touristic destinations in Greece. A set of 104 “long-tail” PoIs is collected for these destinations from Wikipedia, Wikimapia and OpenStreetMap. The results demonstrate that two of the baseline methods outperform Flickr search in terms of precision and F-measure, whereas two of the cluster-based methods outperform it in terms of recall and PoI coverage. We consider the results of this study valuable for enhancing the indexing of pictorial content in social media sites.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting the long-tail of Points of Interest in tagged photo collections\",\"authors\":\"Christos Zigkolis, S. Papadopoulos, Y. Kompatsiaris, A. Vakali\",\"doi\":\"10.1109/CBMI.2011.5972551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper tackles the problem of matching the photos of a tagged photo collection to a list of “long-tail” Points Of Interest (PoIs), that is PoIs that are not very popular and thus not well represented in the photo collection. Despite the significance of improving “long-tail” PoI photo retrieval for travel applications, most landmark detection methods to date have been tested on very popular landmarks. In this paper, we conduct a thorough empirical analysis comparing four baseline matching methods that rely on photo metadata, three variants of an approach that uses cluster analysis in order to discover PoI-related photo clusters, and a real-world retrieval mechanism (Flickr search) on a set of less popular PoIs. A user-based evaluation of the aforementioned methods is conducted on a Flickr photo collection of over 100, 000 photos from 10 well-known touristic destinations in Greece. A set of 104 “long-tail” PoIs is collected for these destinations from Wikipedia, Wikimapia and OpenStreetMap. The results demonstrate that two of the baseline methods outperform Flickr search in terms of precision and F-measure, whereas two of the cluster-based methods outperform it in terms of recall and PoI coverage. We consider the results of this study valuable for enhancing the indexing of pictorial content in social media sites.\",\"PeriodicalId\":358337,\"journal\":{\"name\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2011.5972551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting the long-tail of Points of Interest in tagged photo collections
The paper tackles the problem of matching the photos of a tagged photo collection to a list of “long-tail” Points Of Interest (PoIs), that is PoIs that are not very popular and thus not well represented in the photo collection. Despite the significance of improving “long-tail” PoI photo retrieval for travel applications, most landmark detection methods to date have been tested on very popular landmarks. In this paper, we conduct a thorough empirical analysis comparing four baseline matching methods that rely on photo metadata, three variants of an approach that uses cluster analysis in order to discover PoI-related photo clusters, and a real-world retrieval mechanism (Flickr search) on a set of less popular PoIs. A user-based evaluation of the aforementioned methods is conducted on a Flickr photo collection of over 100, 000 photos from 10 well-known touristic destinations in Greece. A set of 104 “long-tail” PoIs is collected for these destinations from Wikipedia, Wikimapia and OpenStreetMap. The results demonstrate that two of the baseline methods outperform Flickr search in terms of precision and F-measure, whereas two of the cluster-based methods outperform it in terms of recall and PoI coverage. We consider the results of this study valuable for enhancing the indexing of pictorial content in social media sites.