通过相干区域分组的位置感知目标检测

Shen-Chi Chen, Kevin Lin, Chu-Song Chen, Y. Hung
{"title":"通过相干区域分组的位置感知目标检测","authors":"Shen-Chi Chen, Kevin Lin, Chu-Song Chen, Y. Hung","doi":"10.1109/ICASSP.2015.7178178","DOIUrl":null,"url":null,"abstract":"We present a scene adaptation algorithm for object detection. Our method discovers scene-dependent features discriminative to classifying foreground objects into different categories. Unlike previous works suffering from insufficient training data collected online, our approach incorporated with a similarity grouping procedure can automatically gather more consistent training examples from a neighbour area. Experimental results show that the proposed method outperforms several related works with higher detection accuracies.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Location-aware object detection via coherent region grouping\",\"authors\":\"Shen-Chi Chen, Kevin Lin, Chu-Song Chen, Y. Hung\",\"doi\":\"10.1109/ICASSP.2015.7178178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scene adaptation algorithm for object detection. Our method discovers scene-dependent features discriminative to classifying foreground objects into different categories. Unlike previous works suffering from insufficient training data collected online, our approach incorporated with a similarity grouping procedure can automatically gather more consistent training examples from a neighbour area. Experimental results show that the proposed method outperforms several related works with higher detection accuracies.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于目标检测的场景自适应算法。该方法利用场景相关特征对前景物体进行分类。不像以前的工作受到在线收集的训练数据不足的困扰,我们的方法结合了相似分组过程,可以自动从邻近区域收集更一致的训练样本。实验结果表明,该方法在检测精度上优于几种相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location-aware object detection via coherent region grouping
We present a scene adaptation algorithm for object detection. Our method discovers scene-dependent features discriminative to classifying foreground objects into different categories. Unlike previous works suffering from insufficient training data collected online, our approach incorporated with a similarity grouping procedure can automatically gather more consistent training examples from a neighbour area. Experimental results show that the proposed method outperforms several related works with higher detection accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信