一个快速的HITON_PC算法

Wei Yang
{"title":"一个快速的HITON_PC算法","authors":"Wei Yang","doi":"10.1109/CIS.2010.17","DOIUrl":null,"url":null,"abstract":"The HITON_PC algorithm which is a state-of-the-art local causal discovery algorithm can deal with a dataset with a very small sample-to-variable ratio efficiently. But it cannot perform inefficiently on a dataset with a very large sample. To address this problem, a fast HITON_PC algorithm is presented which uses a new yet simple search strategy from high order to low order to improve the efficiency of HITON-PC. Experimental results show our fast HITON_PC outperforms the HITON_PC algorithm. Moreover, we also apply the new search strategy to MMPC algorithm. Our method also is superior to MMPC.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast HITON_PC Algorithm\",\"authors\":\"Wei Yang\",\"doi\":\"10.1109/CIS.2010.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The HITON_PC algorithm which is a state-of-the-art local causal discovery algorithm can deal with a dataset with a very small sample-to-variable ratio efficiently. But it cannot perform inefficiently on a dataset with a very large sample. To address this problem, a fast HITON_PC algorithm is presented which uses a new yet simple search strategy from high order to low order to improve the efficiency of HITON-PC. Experimental results show our fast HITON_PC outperforms the HITON_PC algorithm. Moreover, we also apply the new search strategy to MMPC algorithm. Our method also is superior to MMPC.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

HITON_PC算法是一种最先进的局部因果发现算法,可以有效地处理样本变量比非常小的数据集。但它不能在样本非常大的数据集上低效地执行。为了解决这一问题,提出了一种快速的HITON_PC算法,该算法采用了一种新的简单的从高阶到低阶的搜索策略,提高了HITON_PC算法的效率。实验结果表明,我们的快速HITON_PC算法优于HITON_PC算法。此外,我们还将新的搜索策略应用到MMPC算法中。我们的方法也优于MMPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast HITON_PC Algorithm
The HITON_PC algorithm which is a state-of-the-art local causal discovery algorithm can deal with a dataset with a very small sample-to-variable ratio efficiently. But it cannot perform inefficiently on a dataset with a very large sample. To address this problem, a fast HITON_PC algorithm is presented which uses a new yet simple search strategy from high order to low order to improve the efficiency of HITON-PC. Experimental results show our fast HITON_PC outperforms the HITON_PC algorithm. Moreover, we also apply the new search strategy to MMPC algorithm. Our method also is superior to MMPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信