关于稳健拟合优度检验的阈值

J. Unnikrishnan, Sean P. Meyn, V. Veeravalli
{"title":"关于稳健拟合优度检验的阈值","authors":"J. Unnikrishnan, Sean P. Meyn, V. Veeravalli","doi":"10.1109/CIG.2010.5592803","DOIUrl":null,"url":null,"abstract":"Goodness-of-fit tests are statistical procedures used to test the hypothesis H0 that a set of observations were drawn according to some given probability distribution. Decision thresholds used in goodness-of-fit tests are typically set for guaranteeing a target false-alarm probability. In many popular testing procedures results on the weak convergence of the test statistics are used for setting approximate thresholds when exact computation is infeasible. In this work, we study robust procedures for goodness-of-fit where accurate models are not available for the distribution of the observations under hypothesis H0. We develop procedures for setting thresholds in two specific examples — a robust version of the Kolmogorov-Smirnov test for continuous alphabets and a robust version of the Hoeffding test for finite alphabets.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On thresholds for robust goodness-of-fit tests\",\"authors\":\"J. Unnikrishnan, Sean P. Meyn, V. Veeravalli\",\"doi\":\"10.1109/CIG.2010.5592803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goodness-of-fit tests are statistical procedures used to test the hypothesis H0 that a set of observations were drawn according to some given probability distribution. Decision thresholds used in goodness-of-fit tests are typically set for guaranteeing a target false-alarm probability. In many popular testing procedures results on the weak convergence of the test statistics are used for setting approximate thresholds when exact computation is infeasible. In this work, we study robust procedures for goodness-of-fit where accurate models are not available for the distribution of the observations under hypothesis H0. We develop procedures for setting thresholds in two specific examples — a robust version of the Kolmogorov-Smirnov test for continuous alphabets and a robust version of the Hoeffding test for finite alphabets.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

拟合优度检验是用于检验假设H0的统计程序,即根据给定的概率分布绘制的一组观察值。在拟合优度测试中使用的决策阈值通常是为保证目标假警报概率而设置的。在许多流行的测试程序中,测试统计量的弱收敛结果用于在无法进行精确计算时设置近似阈值。在这项工作中,我们研究了拟合优度的稳健程序,其中在假设H0下观测值的分布没有准确的模型。我们开发了在两个特定示例中设置阈值的程序-连续字母的稳健版Kolmogorov-Smirnov检验和有限字母的稳健版Hoeffding检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On thresholds for robust goodness-of-fit tests
Goodness-of-fit tests are statistical procedures used to test the hypothesis H0 that a set of observations were drawn according to some given probability distribution. Decision thresholds used in goodness-of-fit tests are typically set for guaranteeing a target false-alarm probability. In many popular testing procedures results on the weak convergence of the test statistics are used for setting approximate thresholds when exact computation is infeasible. In this work, we study robust procedures for goodness-of-fit where accurate models are not available for the distribution of the observations under hypothesis H0. We develop procedures for setting thresholds in two specific examples — a robust version of the Kolmogorov-Smirnov test for continuous alphabets and a robust version of the Hoeffding test for finite alphabets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信